|
from typing import Any, Dict, List, Literal, Optional |
|
|
|
from .api import infer |
|
from .artifact import fetch_artifact |
|
from .dataclass import Field |
|
from .formats import Format, SystemFormat |
|
from .inference import InferenceEngine, OpenAiInferenceEngine |
|
from .metrics import BulkInstanceMetric |
|
from .operator import SequentialOperator |
|
from .settings_utils import get_settings |
|
from .system_prompts import EmptySystemPrompt, SystemPrompt |
|
from .templates import Template |
|
|
|
settings = get_settings() |
|
|
|
|
|
class LLMAsJudge(BulkInstanceMetric): |
|
"""LLM-as-judge-based metric class for evaluating correctness. |
|
|
|
Attributes: |
|
main_score (str): The main score label used for evaluation. |
|
task (Literal["rating.single_turn"]): The type of task the llm as judge runs. This defines the output and input |
|
format of the judge model. |
|
template (Template): The template used when generating inputs for the judge llm. |
|
format (Format): The format used when generating inputs for judge llm. |
|
system_prompt (SystemPrompt): The system prompt used when generating inputs for judge llm. |
|
strip_system_prompt_and_format_from_inputs (bool): Whether to strip the system prompt and formatting from the |
|
inputs that the models that is being judges received, when they are inserted to the llm-as-judge prompt. |
|
inference_model (InferenceEngine): The module that creates the inference of the judge llm. |
|
reduction_map (dict): A dictionary specifying the reduction method for the metric. |
|
batch_size (int): The size of the bulk. |
|
""" |
|
|
|
main_score: str = "llm_as_judge" |
|
task: Literal[ |
|
"rating.single_turn", |
|
"rating.single_turn_with_reference", |
|
"pairwise_comparative_rating.single_turn", |
|
] |
|
template: Template |
|
system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt) |
|
format: Format = Field(default_factory=SystemFormat) |
|
strip_system_prompt_and_format_from_inputs: bool = True |
|
inference_model: InferenceEngine |
|
reduction_map: Optional[Dict[str, List[str]]] = None |
|
batch_size: int = 32 |
|
prediction_type = Any |
|
|
|
def _get_input_instances(self, task_data: List[Dict]) -> List: |
|
if self.strip_system_prompt_and_format_from_inputs: |
|
instances = [] |
|
for task_data_instance in task_data: |
|
template = task_data_instance["metadata"]["template"] |
|
template, _ = fetch_artifact(template) |
|
instance = SequentialOperator( |
|
steps=[template, "formats.empty"] |
|
).process_instance( |
|
{ |
|
"input_fields": task_data_instance, |
|
"reference_fields": task_data_instance, |
|
} |
|
) |
|
instances.append(instance["source"]) |
|
""" |
|
We also have access to: instance["target"] |
|
instance["references"] |
|
""" |
|
return instances |
|
return [t["source"] for t in task_data] |
|
|
|
def _get_instance_for_judge_model( |
|
self, input_instances: List[str], predictions: List, references: List |
|
) -> List[Dict]: |
|
if self.task == "rating.single_turn": |
|
instances = [ |
|
{ |
|
"question": input_instance, |
|
"answer": prediction, |
|
} |
|
for input_instance, prediction, reference in zip( |
|
input_instances, predictions, references |
|
) |
|
] |
|
elif self.task == "rating.single_turn_with_reference": |
|
instances = [ |
|
{ |
|
"question": input_instance, |
|
"answer": prediction, |
|
"reference_answer": reference[0], |
|
} |
|
for input_instance, prediction, reference in zip( |
|
input_instances, predictions, references |
|
) |
|
] |
|
elif self.task == "pairwise_comparative_rating.single_turn": |
|
instances = [ |
|
{ |
|
"question": input_instance, |
|
"answer_a": prediction, |
|
"answer_b": reference[0], |
|
"model_a": "input_model", |
|
"model_b": "baseline_model", |
|
} |
|
for input_instance, prediction, reference in zip( |
|
input_instances, predictions, references |
|
) |
|
] |
|
else: |
|
raise NotImplementedError( |
|
f"Error in 'LLMAsJudge' metric. {self.task} is not a supported task type." |
|
) |
|
return instances |
|
|
|
def prepare(self): |
|
super().prepare() |
|
if self.task == "pairwise_comparative_rating.single_turn": |
|
self.reduction_map = {"weighted_win_rate": [self.main_score]} |
|
if self.reduction_map is None: |
|
self.reduction_map = {"mean": [self.main_score]} |
|
|
|
def verify(self): |
|
supported_tasks = [ |
|
"rating.single_turn", |
|
"rating.single_turn_with_reference", |
|
"pairwise_comparative_rating.single_turn", |
|
] |
|
assert self.task in supported_tasks, ( |
|
f"Error in 'LLMAsJudge' metric. {self.task} is not a supported task type." |
|
f"The supported tasks types are: {', '.join(supported_tasks)}." |
|
) |
|
|
|
if not isinstance(self.template, Template): |
|
raise ValueError( |
|
f"Provided template argument to 'LLMAsJudge' metric is not of type Template, but {type(self.template)}" |
|
) |
|
if self.format and not isinstance(self.format, Format): |
|
raise ValueError( |
|
f"Provided format argument to 'LLMAsJudge' metric is not of type Format, but {type(self.format)}" |
|
) |
|
|
|
if self.system_prompt and not isinstance(self.system_prompt, SystemPrompt): |
|
raise ValueError( |
|
f"Provided system_prompt argument to 'LLMAsJudge' metric is not of type SystemPrompt, but {type(self.system_prompt)}" |
|
) |
|
|
|
if isinstance(self.inference_model, OpenAiInferenceEngine): |
|
if self.format and type(self.format) is not SystemFormat: |
|
raise ValueError( |
|
"Error in 'LLMAsJudge' metric. Inference model 'OpenAiInferenceEngine' does " |
|
"not support formatting. Please remove the format definition from the recipe" |
|
" (OpenAi Chat API take care of the formatting automatically)." |
|
) |
|
if self.system_prompt and type(self.system_prompt) is not EmptySystemPrompt: |
|
raise ValueError( |
|
"Error in 'LLMAsJudge' metric. Inference model 'OpenAiInferenceEngine' does " |
|
"not support system prompt. Please remove the system_prompt definition from the recipe" |
|
" (Current implementation of Unitxt does not support this." |
|
" Support will be added in future updates)." |
|
) |
|
|
|
def compute( |
|
self, |
|
references: List[List[Any]], |
|
predictions: List[Any], |
|
task_data: List[Dict], |
|
) -> List[Dict[str, Any]]: |
|
input_instances = self._get_input_instances(task_data) |
|
instances = self._get_instance_for_judge_model( |
|
input_instances, predictions, references |
|
) |
|
outputs = infer( |
|
instances, |
|
engine=self.inference_model, |
|
task=f"tasks.response_assessment.{self.task}", |
|
template=self.template, |
|
system_prompt=self.system_prompt, |
|
format=self.format, |
|
return_data=True, |
|
) |
|
|
|
results = [] |
|
for instance in outputs: |
|
if self.task == "pairwise_comparative_rating.single_turn": |
|
import json |
|
|
|
|
|
|
|
task_data = ( |
|
json.loads(instance["task_data"]) |
|
if isinstance(instance["task_data"], str) |
|
else instance["task_data"] |
|
) |
|
|
|
is_model_b_the_baseline = task_data["model_b"] == "baseline_model" |
|
if is_model_b_the_baseline: |
|
model_a_preference_score = instance["prediction"] |
|
else: |
|
model_a_preference_score = instance["prediction"] * -1 |
|
|
|
result = { |
|
self.main_score: model_a_preference_score, |
|
"judge_raw_output": instance["raw_prediction"], |
|
"judge_raw_input": instance["source"], |
|
} |
|
else: |
|
result = { |
|
self.main_score: instance["prediction"], |
|
"judge_raw_output": instance["raw_prediction"], |
|
"judge_raw_input": instance["source"], |
|
} |
|
results.append(result) |
|
|
|
return results |
|
|