|
import json |
|
from collections import defaultdict |
|
from functools import lru_cache |
|
from statistics import mean |
|
from typing import Any, Dict, Iterable, List, Optional |
|
|
|
from datasets import Features, Value |
|
|
|
from .dataclass import Dataclass |
|
from .operator import ( |
|
MultiStreamOperator, |
|
SequentialOperator, |
|
SequentialOperatorInitializer, |
|
StreamInitializerOperator, |
|
) |
|
from .operators import ( |
|
ApplyMetric, |
|
ApplyOperatorsField, |
|
Copy, |
|
FlattenInstances, |
|
Rename, |
|
) |
|
from .register import _reset_env_local_catalogs, register_all_artifacts |
|
from .schema import UNITXT_DATASET_SCHEMA |
|
from .settings_utils import get_constants, get_settings |
|
from .stream import DynamicStream, MultiStream |
|
from .struct_data_operators import LoadJson |
|
from .utils import deepcopy |
|
|
|
constants = get_constants() |
|
|
|
|
|
def nan_mean(scores): |
|
return mean(score for score in scores if score == score) |
|
|
|
|
|
class FromPredictionsAndOriginalData(StreamInitializerOperator): |
|
def zip(self, predictions, references): |
|
for prediction, original in zip(predictions, references): |
|
yield {**original, "prediction": prediction} |
|
|
|
def process( |
|
self, predictions: List[str], references: Iterable, split_name: str = "all" |
|
) -> MultiStream: |
|
return MultiStream( |
|
{ |
|
split_name: DynamicStream( |
|
self.zip, |
|
gen_kwargs={"predictions": predictions, "references": references}, |
|
) |
|
} |
|
) |
|
|
|
|
|
_post_process_steps = SequentialOperator( |
|
steps=[ |
|
Copy( |
|
field="prediction", |
|
to_field="raw_prediction", |
|
), |
|
Copy( |
|
field="references", |
|
to_field="raw_references", |
|
dont_apply_to_streams=[constants.inference_stream], |
|
), |
|
Copy( |
|
field="source", |
|
to_field="task_data/source", |
|
), |
|
ApplyOperatorsField( |
|
operators_field="postprocessors", |
|
), |
|
Copy( |
|
field="prediction", |
|
to_field="processed_prediction", |
|
), |
|
Copy( |
|
field="references", |
|
to_field="processed_references", |
|
dont_apply_to_streams=[constants.inference_stream], |
|
), |
|
] |
|
) |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def group_str(json_str): |
|
data = json.loads(json_str) |
|
return ",".join(f"{k}:{v}" for k, v in data.items()) |
|
|
|
|
|
class SplitSubsetsAndGroups(MultiStreamOperator): |
|
"""Splits a MultiStream that is small - for metrics, hence: whole stream can sit in memory, split by the value of field 'group'. |
|
|
|
Args: |
|
number_of_fusion_generations: int |
|
|
|
the value in field group is of the form "sourcen/sourcenminus1/..." describing the sources in which the instance sat |
|
when these were fused, potentially several phases of fusion. the name of the most recent source sits first in this value. |
|
(See BaseFusion and its extensions) |
|
subsets_depth specifies the depth of the prefix by which to split the stream. |
|
""" |
|
|
|
subsets_field: str = "subset" |
|
groups_field: str = "groups" |
|
subset_depth: Optional[int] = None |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
result = defaultdict(list) |
|
|
|
for stream_name, stream in multi_stream.items(): |
|
for i, instance in enumerate(stream): |
|
instance["__idx__"] = i |
|
|
|
for field in [self.subsets_field, self.groups_field]: |
|
if field not in instance: |
|
raise ValueError( |
|
f"Field {field} is missing from instance {instance}" |
|
) |
|
|
|
subset_stream_name = ( |
|
stream_name |
|
+ "://" |
|
+ "/".join(instance[self.subsets_field][: self.subset_depth]) |
|
) |
|
|
|
result[subset_stream_name].append(instance) |
|
|
|
for group in instance[self.groups_field]: |
|
result[subset_stream_name + "?" + group_str(group)].append(instance) |
|
|
|
return MultiStream.from_iterables(result, copying=True) |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def group_str_to_key_value(group_str): |
|
keys = [] |
|
values = [] |
|
for k_v in group_str.split(","): |
|
k, v = k_v.split(":") |
|
if v.isdigit(): |
|
v = int(v) |
|
keys.append(k) |
|
values.append(v) |
|
|
|
if len(keys) == 1: |
|
key = keys[0] |
|
else: |
|
key = tuple(keys) |
|
|
|
if len(values) == 1: |
|
value = values[0] |
|
else: |
|
value = tuple(values) |
|
|
|
return key, value |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def stream_name_to_origin_subset_group(stream_name): |
|
origin, subset_group = stream_name.split("://") |
|
if "?" in subset_group: |
|
subset, group = subset_group.split("?") |
|
else: |
|
subset, group = subset_group, None |
|
return origin, subset, group |
|
|
|
|
|
class JoinSubsetsAndGroups(MultiStreamOperator): |
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
instances = defaultdict(dict) |
|
global_scores = defaultdict(dict) |
|
|
|
for stream_name, stream in multi_stream.items(): |
|
origin, subset, group = stream_name_to_origin_subset_group(stream_name) |
|
|
|
for i, instance in enumerate(stream): |
|
global_score = instance["score"].pop("global") |
|
|
|
idx = instance.pop("__idx__") |
|
if idx not in instances[origin]: |
|
instances[origin][idx] = instance |
|
|
|
|
|
|
|
if i > 0: |
|
continue |
|
|
|
if not group and not subset: |
|
global_scores[origin]["global"] = global_score |
|
else: |
|
path = [] |
|
|
|
if subset: |
|
path += ["subsets", *subset.split("/")] |
|
|
|
if group: |
|
key, value = group_str_to_key_value(group) |
|
path += ["groups", key, value] |
|
|
|
target = global_scores[origin] |
|
for part in path[:-1]: |
|
if part not in target: |
|
target[part] = {} |
|
target = target[part] |
|
target[path[-1]] = global_score |
|
|
|
|
|
def recursive_mean(dic): |
|
if isinstance(dic, dict): |
|
if "score" in dic and "score_name" in dic: |
|
return dic |
|
|
|
result = {} |
|
all_scores = [] |
|
for k, v in dic.items(): |
|
score = recursive_mean(v) |
|
if score is not None: |
|
all_scores.append(score["score"]) |
|
result[k] = score |
|
|
|
result["score"] = nan_mean(all_scores) |
|
result["score_name"] = "subsets_mean" |
|
|
|
if result: |
|
return result |
|
|
|
return None |
|
|
|
result = {} |
|
for stream_name, stream_instances in instances.items(): |
|
score = global_scores[stream_name] |
|
|
|
if "subsets" in score: |
|
score["subsets"] = recursive_mean(score["subsets"]) |
|
score["global"] = { |
|
"score": score["subsets"]["score"], |
|
"score_name": score["subsets"]["score_name"], |
|
} |
|
|
|
sorted_instances = [] |
|
for key in sorted(stream_instances.keys()): |
|
instance = stream_instances[key] |
|
instance["score"].update(deepcopy(score)) |
|
sorted_instances.append(instance) |
|
result[stream_name] = sorted_instances |
|
|
|
return MultiStream.from_iterables(result, copying=True) |
|
|
|
|
|
class PostProcessRecipe(SequentialOperatorInitializer): |
|
def prepare(self): |
|
register_all_artifacts() |
|
self.steps = [ |
|
FromPredictionsAndOriginalData(), |
|
_post_process_steps, |
|
] |
|
|
|
|
|
def _inference_post_process( |
|
predictions: List[str], |
|
references: Iterable, |
|
split_name: str = constants.inference_stream, |
|
): |
|
_reset_env_local_catalogs() |
|
register_all_artifacts() |
|
recipe = PostProcessRecipe() |
|
|
|
multi_stream = recipe( |
|
predictions=predictions, references=references, split_name=split_name |
|
) |
|
|
|
return [instance["processed_prediction"] for instance in multi_stream[split_name]] |
|
|
|
|
|
class MetricRecipe(SequentialOperatorInitializer): |
|
calc_confidence_intervals: bool = True |
|
subset_depth: int = 2 |
|
|
|
def prepare(self): |
|
register_all_artifacts() |
|
self.steps = [ |
|
FromPredictionsAndOriginalData(), |
|
LoadJson(field="task_data"), |
|
_post_process_steps, |
|
SplitSubsetsAndGroups( |
|
subset_depth=self.subset_depth, |
|
), |
|
ApplyMetric( |
|
"metrics", |
|
calc_confidence_intervals=self.calc_confidence_intervals, |
|
), |
|
JoinSubsetsAndGroups(), |
|
Rename( |
|
field="raw_prediction", |
|
to_field="prediction", |
|
), |
|
Rename( |
|
field="raw_references", |
|
to_field="references", |
|
), |
|
Copy( |
|
field="source", |
|
to_field="task_data/source", |
|
), |
|
] |
|
|
|
|
|
UNITXT_METRIC_SCHEMA = Features( |
|
{"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)} |
|
) |
|
|
|
|
|
def _compute( |
|
predictions: List[str], |
|
references: Iterable, |
|
flatten: bool = False, |
|
split_name: str = "all", |
|
calc_confidence_intervals: bool = True, |
|
): |
|
_reset_env_local_catalogs() |
|
register_all_artifacts() |
|
recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals) |
|
|
|
multi_stream = recipe( |
|
predictions=predictions, references=references, split_name=split_name |
|
) |
|
|
|
if flatten: |
|
operator = FlattenInstances() |
|
multi_stream = operator(multi_stream) |
|
|
|
stream = multi_stream[split_name] |
|
return list(stream) |
|
|
|
|
|
""" |
|
The API of a metric service: |
|
- MetricRequest: A single input request to the metrics service. |
|
- MetricResponse: A response returned from a metrics service. |
|
""" |
|
|
|
|
|
class InstanceInput(Dataclass): |
|
"""A single instance inputted to a metric service.""" |
|
|
|
prediction: Any |
|
references: List[Any] |
|
additional_inputs: Optional[Dict] = None |
|
|
|
|
|
class MetricRequest(Dataclass): |
|
"""A request to a metrics service, includes a list of input instances.""" |
|
|
|
instance_inputs: List[InstanceInput] |
|
|
|
|
|
class MetricResponse(Dataclass): |
|
"""A response produced by a metrics service, includes the computed scores.""" |
|
|
|
|
|
|
|
instances_scores: List[Dict[str, Any]] |
|
|
|
|
|
|
|
global_score: Dict[str, Any] |
|
|
|
|
|
""" |
|
Functionality for loading the remote metrics configuration from local environment variables. |
|
""" |
|
|
|
|
|
|
|
|
|
UNITXT_REMOTE_METRICS = "UNITXT_REMOTE_METRICS" |
|
|
|
|
|
|
|
UNITXT_REMOTE_METRICS_ENDPOINT = "UNITXT_REMOTE_METRICS_ENDPOINT" |
|
|
|
|
|
def get_remote_metrics_names() -> List[str]: |
|
"""Load the remote metrics names from an environment variable. |
|
|
|
Returns: |
|
List[str] - names of metrics to be executed remotely. |
|
""" |
|
settings = get_settings() |
|
remote_metrics = settings.remote_metrics |
|
if remote_metrics: |
|
remote_metrics = json.loads(remote_metrics) |
|
if not isinstance(remote_metrics, list): |
|
raise RuntimeError( |
|
f"Unexpected value {remote_metrics} for the '{UNITXT_REMOTE_METRICS}' environment variable. " |
|
f"The value is expected to be a list of metric names in json format." |
|
) |
|
for remote_metric in remote_metrics: |
|
if not isinstance(remote_metric, str): |
|
raise RuntimeError( |
|
f"Unexpected value {remote_metric} within the '{UNITXT_REMOTE_METRICS}' environment variable. " |
|
f"The value is expected to be a string but its type is {type(remote_metric)}." |
|
) |
|
return remote_metrics |
|
|
|
|
|
def get_remote_metrics_endpoint() -> str: |
|
"""Load the remote metrics endpoint from an environment variable. |
|
|
|
Returns: |
|
str - The remote endpoint on which the remote metrics are available. |
|
""" |
|
settings = get_settings() |
|
try: |
|
remote_metrics_endpoint = settings.remote_metrics_endpoint |
|
except AttributeError as e: |
|
raise RuntimeError( |
|
f"Unexpected None value for '{UNITXT_REMOTE_METRICS_ENDPOINT}'. " |
|
f"Running remote metrics requires defining an " |
|
f"endpoint in the environment variable '{UNITXT_REMOTE_METRICS_ENDPOINT}'." |
|
) from e |
|
return remote_metrics_endpoint |
|
|