Datasets:

ArXiv:
data / metric.py
Elron's picture
Upload metric.py with huggingface_hub
ba31342
raw
history blame
5.1 kB
from dataclasses import field
from typing import Any, Dict, Generator, Iterable, List, Optional, Union
import datasets
import evaluate
from datasets import Features, Sequence, Value
from ._version import __file__ as _
from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .common import __file__ as _
from .dataclass import __file__ as _
from .dict_utils import __file__ as _
from .file_utils import __file__ as _
from .fusion import __file__ as _
from .generator_utils import __file__ as _
from .hf_utils import __file__ as _
from .instructions import __file__ as _
from .load import __file__ as _
from .loaders import __file__ as _
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import (
MultiStreamOperator,
SequntialOperator,
SequntialOperatorInitilizer,
StreamInitializerOperator,
)
from .operator import __file__ as _
from .operators import (
ApplyStreamOperatorsField,
ApplyValueOperatorsField,
FlattenInstances,
MergeStreams,
SplitByValue,
)
from .operators import __file__ as _
from .processors import __file__ as _
from .random_utils import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .register import register_all_artifacts
from .schema import __file__ as _
from .split_utils import __file__ as _
from .splitters import __file__ as _
from .stream import MultiStream, Stream
from .stream import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .type_utils import __file__ as _
from .utils import __file__ as _
from .validate import __file__ as _
class MultiStreamScoreMean(MultiStreamOperator):
def aggegate_results(self, multi_stream: MultiStream):
scores = []
for stream in multi_stream.values():
instance = stream.peak()
scores.append(instance["score"]["global"]["score"])
from statistics import mean
return mean(scores)
def spread_results(self, stream: Stream, score: float):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = score
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
mean_score = self.aggegate_results(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(self.spread_results, gen_kwargs={"stream": stream, "score": mean_score})
return MultiStream(result)
class FromPredictionsAndOriginalData(StreamInitializerOperator):
def zip(self, predictions, references):
for prediction, original in zip(predictions, references):
yield {**original, "prediction": prediction}
def process(self, predictions: List[str], references: Iterable, split_name: str = "all") -> MultiStream:
return MultiStream(
{split_name: Stream(self.zip, gen_kwargs={"predictions": predictions, "references": references})}
)
from .schema import UNITXT_DATASET_SCHEMA
class MetricRecipe(SequntialOperatorInitilizer):
def prepare(self):
register_all_artifacts()
self.steps = [
FromPredictionsAndOriginalData(),
ApplyValueOperatorsField(
value_field="prediction", operators_field="processors", default_operators=["processors.to_string"]
),
SplitByValue(["group"]),
ApplyStreamOperatorsField(
"metrics",
reversed=True,
),
MultiStreamScoreMean(),
MergeStreams(),
]
UNITXT_METRIC_SCHEMA = Features({"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)})
def _compute(predictions: List[str], references: Iterable, flatten: bool = False, split_name: str = "all"):
recipe = MetricRecipe()
multi_stream = recipe(predictions=predictions, references=references, split_name=split_name)
if flatten:
operator = FlattenInstances()
multi_stream = operator(multi_stream)
stream = multi_stream[split_name]
return list(stream)
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Metric(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description="_DESCRIPTION",
citation="_CITATION",
# inputs_description=_KWARGS_DESCRIPTION,
features=UNITXT_METRIC_SCHEMA,
codebase_urls=["https://"],
reference_urls=[
"https://",
"https://",
],
)
def _compute(self, predictions: List[str], references: Iterable, flatten: bool = False, split_name: str = "all"):
return _compute(predictions=predictions, references=references, flatten=flatten, split_name=split_name)