Datasets:

ArXiv:
data / metrics.py
Elron's picture
Upload metrics.py with huggingface_hub
5218ddd
raw
history blame
4.38 kB
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, List, Generator
from .operator import SingleStreamOperator, StreamInstanceOperator
from .stream import Stream
def absrtact_factory():
return {}
def abstract_field():
return field(default_factory=absrtact_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(ABC):
@property
@abstractmethod
def main_score(self):
pass
class GlobalMetric(SingleStreamOperator, Metric):
def process(self, stream: Stream):
references = []
predictions = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
refs, pred = instance["references"], instance["prediction"]
instance_score = self._compute([refs], [pred])
instance["score"]["instance"].update(instance_score)
references.append(refs)
predictions.append(pred)
instances.append(instance)
result = self._compute(references, predictions)
global_score.update(result)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references, predictions)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
pass
class InstanceMetric(SingleStreamOperator, Metric):
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: str = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
instance_score = self._compute(refs, pred)
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field in fields:
global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
if field == self.main_score:
global_score["score"] = global_score[field]
for instance in instances:
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references, predictions)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, references: List[str], prediction: str) -> dict:
pass
class SingleReferenceInstanceMetric(InstanceMetric):
def _compute(self, references: List[str], prediction: str) -> dict:
result = self.compute(references[0], prediction)
result["score"] = result[self.main_score]
return result
@abstractmethod
def compute(self, reference, prediction: str) -> dict:
pass
class Accuracy(SingleReferenceInstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(self, reference, prediction: str) -> dict:
return {"accuracy": float(str(reference) == str(prediction))}