|
import difflib |
|
import inspect |
|
import json |
|
import os |
|
import pkgutil |
|
import re |
|
from abc import abstractmethod |
|
from typing import Any, Dict, List, Optional, Tuple, Union, final |
|
|
|
from .dataclass import ( |
|
AbstractField, |
|
Dataclass, |
|
Field, |
|
InternalField, |
|
NonPositionalField, |
|
fields, |
|
) |
|
from .logging_utils import get_logger |
|
from .parsing_utils import ( |
|
separate_inside_and_outside_square_brackets, |
|
) |
|
from .settings_utils import get_constants, get_settings |
|
from .text_utils import camel_to_snake_case, is_camel_case |
|
from .type_utils import issubtype |
|
from .utils import ( |
|
artifacts_json_cache, |
|
json_dump, |
|
save_to_file, |
|
shallow_copy, |
|
) |
|
|
|
logger = get_logger() |
|
settings = get_settings() |
|
constants = get_constants() |
|
|
|
|
|
def is_name_legal_for_catalog(name): |
|
return re.match(r"^[\w" + constants.catalog_hierarchy_sep + "]+$", name) |
|
|
|
|
|
def verify_legal_catalog_name(name): |
|
assert is_name_legal_for_catalog( |
|
name |
|
), f'Artifict name ("{name}") should be alphanumeric. Use "." for nesting (e.g. myfolder.my_artifact)' |
|
|
|
|
|
class Artifactories: |
|
def __new__(cls): |
|
if not hasattr(cls, "instance"): |
|
cls.instance = super().__new__(cls) |
|
cls.instance.artifactories = [] |
|
|
|
return cls.instance |
|
|
|
def __iter__(self): |
|
self._index = 0 |
|
return self |
|
|
|
def __next__(self): |
|
while self._index < len(self.artifactories): |
|
artifactory = self.artifactories[self._index] |
|
self._index += 1 |
|
if ( |
|
settings.use_only_local_catalogs and not artifactory.is_local |
|
): |
|
continue |
|
return artifactory |
|
raise StopIteration |
|
|
|
def register(self, artifactory): |
|
assert isinstance( |
|
artifactory, Artifactory |
|
), "Artifactory must be an instance of Artifactory" |
|
assert hasattr( |
|
artifactory, "__contains__" |
|
), "Artifactory must have __contains__ method" |
|
assert hasattr( |
|
artifactory, "__getitem__" |
|
), "Artifactory must have __getitem__ method" |
|
self.artifactories = [artifactory, *self.artifactories] |
|
|
|
def unregister(self, artifactory): |
|
assert isinstance( |
|
artifactory, Artifactory |
|
), "Artifactory must be an instance of Artifactory" |
|
assert hasattr( |
|
artifactory, "__contains__" |
|
), "Artifactory must have __contains__ method" |
|
assert hasattr( |
|
artifactory, "__getitem__" |
|
), "Artifactory must have __getitem__ method" |
|
self.artifactories.remove(artifactory) |
|
|
|
def reset(self): |
|
self.artifactories = [] |
|
|
|
|
|
def map_values_in_place(object, mapper): |
|
if isinstance(object, dict): |
|
for key, value in object.items(): |
|
object[key] = mapper(value) |
|
return object |
|
if isinstance(object, list): |
|
for i in range(len(object)): |
|
object[i] = mapper(object[i]) |
|
return object |
|
return mapper(object) |
|
|
|
|
|
def get_closest_artifact_type(type): |
|
artifact_type_options = list(Artifact._class_register.keys()) |
|
matches = difflib.get_close_matches(type, artifact_type_options) |
|
if matches: |
|
return matches[0] |
|
return None |
|
|
|
|
|
class UnrecognizedArtifactTypeError(ValueError): |
|
def __init__(self, type) -> None: |
|
maybe_class = "".join(word.capitalize() for word in type.split("_")) |
|
message = f"'{type}' is not a recognized artifact 'type'. Make sure a the class defined this type (Probably called '{maybe_class}' or similar) is defined and/or imported anywhere in the code executed." |
|
closest_artifact_type = get_closest_artifact_type(type) |
|
if closest_artifact_type is not None: |
|
message += "\n\n" f"Did you mean '{closest_artifact_type}'?" |
|
super().__init__(message) |
|
|
|
|
|
class MissingArtifactTypeError(ValueError): |
|
def __init__(self, dic) -> None: |
|
message = ( |
|
f"Missing '__type__' parameter. Expected 'type' in artifact dict, got {dic}" |
|
) |
|
super().__init__(message) |
|
|
|
|
|
class Artifact(Dataclass): |
|
_class_register = {} |
|
|
|
__type__: str = Field(default=None, final=True, init=False) |
|
__description__: str = NonPositionalField( |
|
default=None, required=False, also_positional=False |
|
) |
|
__tags__: Dict[str, str] = NonPositionalField( |
|
default_factory=dict, required=False, also_positional=False |
|
) |
|
__id__: str = InternalField(default=None, required=False, also_positional=False) |
|
|
|
data_classification_policy: List[str] = NonPositionalField( |
|
default=None, required=False, also_positional=False |
|
) |
|
|
|
@classmethod |
|
def is_artifact_dict(cls, d): |
|
return isinstance(d, dict) and "__type__" in d |
|
|
|
@classmethod |
|
def verify_artifact_dict(cls, d): |
|
if not isinstance(d, dict): |
|
raise ValueError( |
|
f"Artifact dict <{d}> must be of type 'dict', got '{type(d)}'." |
|
) |
|
if "__type__" not in d: |
|
raise MissingArtifactTypeError(d) |
|
if not cls.is_registered_type(d["__type__"]): |
|
raise UnrecognizedArtifactTypeError(d["__type__"]) |
|
|
|
@classmethod |
|
def get_artifact_type(cls): |
|
return camel_to_snake_case(cls.__name__) |
|
|
|
@classmethod |
|
def register_class(cls, artifact_class): |
|
assert issubclass( |
|
artifact_class, Artifact |
|
), f"Artifact class must be a subclass of Artifact, got '{artifact_class}'" |
|
assert is_camel_case( |
|
artifact_class.__name__ |
|
), f"Artifact class name must be legal camel case, got '{artifact_class.__name__}'" |
|
|
|
snake_case_key = camel_to_snake_case(artifact_class.__name__) |
|
|
|
if cls.is_registered_type(snake_case_key): |
|
assert ( |
|
str(cls._class_register[snake_case_key]) == str(artifact_class) |
|
), f"Artifact class name must be unique, '{snake_case_key}' already exists for {cls._class_register[snake_case_key]}. Cannot be overridden by {artifact_class}." |
|
|
|
return snake_case_key |
|
|
|
cls._class_register[snake_case_key] = artifact_class |
|
|
|
return snake_case_key |
|
|
|
def __init_subclass__(cls, **kwargs): |
|
super().__init_subclass__(**kwargs) |
|
cls.register_class(cls) |
|
|
|
@classmethod |
|
def is_artifact_file(cls, path): |
|
if not os.path.exists(path) or not os.path.isfile(path): |
|
return False |
|
with open(path) as f: |
|
d = json.load(f) |
|
return cls.is_artifact_dict(d) |
|
|
|
@classmethod |
|
def is_registered_type(cls, type: str): |
|
return type in cls._class_register |
|
|
|
@classmethod |
|
def is_registered_class_name(cls, class_name: str): |
|
snake_case_key = camel_to_snake_case(class_name) |
|
return cls.is_registered_type(snake_case_key) |
|
|
|
@classmethod |
|
def is_registered_class(cls, clz: object): |
|
return clz in set(cls._class_register.values()) |
|
|
|
@classmethod |
|
def _recursive_load(cls, obj): |
|
if isinstance(obj, dict): |
|
new_d = {} |
|
for key, value in obj.items(): |
|
new_d[key] = cls._recursive_load(value) |
|
obj = new_d |
|
elif isinstance(obj, list): |
|
obj = [cls._recursive_load(value) for value in obj] |
|
else: |
|
pass |
|
if cls.is_artifact_dict(obj): |
|
cls.verify_artifact_dict(obj) |
|
artifact_class = cls._class_register[obj.pop("__type__")] |
|
obj = artifact_class.process_data_after_load(obj) |
|
return artifact_class(**obj) |
|
|
|
return obj |
|
|
|
@classmethod |
|
def from_dict(cls, d, overwrite_args=None): |
|
if overwrite_args is not None: |
|
d = {**d, **overwrite_args} |
|
cls.verify_artifact_dict(d) |
|
return cls._recursive_load(d) |
|
|
|
@classmethod |
|
def load(cls, path, artifact_identifier=None, overwrite_args=None): |
|
d = artifacts_json_cache(path) |
|
new_artifact = cls.from_dict(d, overwrite_args=overwrite_args) |
|
new_artifact.__id__ = artifact_identifier |
|
return new_artifact |
|
|
|
def get_pretty_print_name(self): |
|
if self.__id__ is not None: |
|
return self.__id__ |
|
return self.__class__.__name__ |
|
|
|
def prepare(self): |
|
pass |
|
|
|
def verify(self): |
|
pass |
|
|
|
@final |
|
def __pre_init__(self, **kwargs): |
|
self._init_dict = get_raw(kwargs) |
|
|
|
@final |
|
def verify_data_classification_policy(self): |
|
if self.data_classification_policy is not None: |
|
if not isinstance(self.data_classification_policy, list) or not all( |
|
isinstance(data_classification, str) |
|
for data_classification in self.data_classification_policy |
|
): |
|
raise ValueError( |
|
f"The 'data_classification_policy' of {self.get_pretty_print_name()} " |
|
f"must be either None - in case when no policy applies - or a list of " |
|
f"strings, for example: ['public']. However, '{self.data_classification_policy}' " |
|
f"of type {type(self.data_classification_policy)} was provided instead." |
|
) |
|
|
|
@final |
|
def __post_init__(self): |
|
self.__type__ = self.register_class(self.__class__) |
|
|
|
for field in fields(self): |
|
if issubtype( |
|
field.type, Union[Artifact, List[Artifact], Dict[str, Artifact]] |
|
): |
|
value = getattr(self, field.name) |
|
value = map_values_in_place(value, maybe_recover_artifact) |
|
setattr(self, field.name, value) |
|
|
|
self.verify_data_classification_policy() |
|
if not settings.skip_artifacts_prepare_and_verify: |
|
self.prepare() |
|
self.verify() |
|
|
|
def _to_raw_dict(self): |
|
return { |
|
"__type__": self.__type__, |
|
**self.process_data_before_dump(self._init_dict), |
|
} |
|
|
|
def __deepcopy__(self, memo): |
|
if id(self) in memo: |
|
return memo[id(self)] |
|
new_obj = Artifact.from_dict(self.to_dict()) |
|
memo[id(self)] = new_obj |
|
return new_obj |
|
|
|
def process_data_before_dump(self, data): |
|
return data |
|
|
|
@classmethod |
|
def process_data_after_load(cls, data): |
|
return data |
|
|
|
def to_json(self): |
|
data = self.to_dict() |
|
return json_dump(data) |
|
|
|
def serialize(self): |
|
if self.__id__ is not None: |
|
return self.__id__ |
|
return self.to_json() |
|
|
|
def save(self, path): |
|
save_to_file(path, self.to_json()) |
|
|
|
def verify_instance( |
|
self, instance: Dict[str, Any], name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
"""Checks if data classifications of an artifact and instance are compatible. |
|
|
|
Raises an error if an artifact's data classification policy does not include that of |
|
processed data. The purpose is to ensure that any sensitive data is handled in a |
|
proper way (for example when sending it to some external services). |
|
|
|
Args: |
|
instance (Dict[str, Any]): data which should contain its allowed data |
|
classification policies under key 'data_classification_policy'. |
|
name (Optional[str]): name of artifact which should be used to retrieve |
|
data classification from env. If not specified, then either __id__ or |
|
__class__.__name__, are used instead, respectively. |
|
|
|
Returns: |
|
Dict[str, Any]: unchanged instance. |
|
|
|
Examples: |
|
instance = {"x": "some_text", "data_classification_policy": ["pii"]} |
|
|
|
# Will raise an error as "pii" is not included policy |
|
metric = Accuracy(data_classification_policy=["public"]) |
|
metric.verify_instance(instance) |
|
|
|
# Will not raise an error |
|
template = SpanLabelingTemplate(data_classification_policy=["pii", "propriety"]) |
|
template.verify_instance(instance) |
|
|
|
# Will not raise an error since the policy was specified in environment variable: |
|
UNITXT_DATA_CLASSIFICATION_POLICY = json.dumps({"metrics.accuracy": ["pii"]}) |
|
metric = fetch_artifact("metrics.accuracy") |
|
metric.verify_instance(instance) |
|
""" |
|
name = name or self.get_pretty_print_name() |
|
data_classification_policy = get_artifacts_data_classification(name) |
|
if not data_classification_policy: |
|
data_classification_policy = self.data_classification_policy |
|
|
|
if not data_classification_policy: |
|
return instance |
|
|
|
instance_data_classification = instance.get("data_classification_policy") |
|
if not instance_data_classification: |
|
get_logger().warning( |
|
f"The data does not provide information if it can be used by " |
|
f"'{name}' with the following data classification policy " |
|
f"'{data_classification_policy}'. This may lead to sending of undesired " |
|
f"data to external service. Set the 'data_classification_policy' " |
|
f"of the data to ensure a proper handling of sensitive information." |
|
) |
|
return instance |
|
|
|
if not any( |
|
data_classification in data_classification_policy |
|
for data_classification in instance_data_classification |
|
): |
|
raise ValueError( |
|
f"The instance '{instance} 'has the following data classification policy " |
|
f"'{instance_data_classification}', however, the artifact '{name}' " |
|
f"is only configured to support the data with classification " |
|
f"'{data_classification_policy}'. To enable this either change " |
|
f"the 'data_classification_policy' attribute of the artifact, " |
|
f"or modify the environment variable " |
|
f"'UNITXT_DATA_CLASSIFICATION_POLICY' accordingly." |
|
) |
|
|
|
return instance |
|
|
|
|
|
def get_raw(obj): |
|
if isinstance(obj, Artifact): |
|
return obj._to_raw_dict() |
|
|
|
if isinstance(obj, tuple) and hasattr(obj, "_fields"): |
|
return type(obj)(*[get_raw(v) for v in obj]) |
|
|
|
if isinstance(obj, (list, tuple)): |
|
return type(obj)([get_raw(v) for v in obj]) |
|
|
|
if isinstance(obj, dict): |
|
return type(obj)({get_raw(k): get_raw(v) for k, v in obj.items()}) |
|
|
|
return shallow_copy(obj) |
|
|
|
|
|
class ArtifactList(list, Artifact): |
|
def prepare(self): |
|
for artifact in self: |
|
artifact.prepare() |
|
|
|
|
|
class Artifactory(Artifact): |
|
is_local: bool = AbstractField() |
|
|
|
@abstractmethod |
|
def __contains__(self, name: str) -> bool: |
|
pass |
|
|
|
@abstractmethod |
|
def __getitem__(self, name) -> Artifact: |
|
pass |
|
|
|
@abstractmethod |
|
def get_with_overwrite(self, name, overwrite_args) -> Artifact: |
|
pass |
|
|
|
|
|
class UnitxtArtifactNotFoundError(Exception): |
|
def __init__(self, name, artifactories): |
|
self.name = name |
|
self.artifactories = artifactories |
|
|
|
def __str__(self): |
|
msg = f"Artifact {self.name} does not exist, in artifactories:{self.artifactories}." |
|
if settings.use_only_local_catalogs: |
|
msg += f" Notice that unitxt.settings.use_only_local_catalogs is set to True, if you want to use remote catalogs set this settings or the environment variable {settings.use_only_local_catalogs_key}." |
|
return f"Artifact {self.name} does not exist, in artifactories:{self.artifactories}" |
|
|
|
|
|
def fetch_artifact(artifact_rep) -> Tuple[Artifact, Union[Artifactory, None]]: |
|
"""Loads an artifict from one of possible representations. |
|
|
|
(1) If artifact representation is already an Artifact object, return it. |
|
(2) If artifact representation is a string location of a local file, load the Artifact from the local file. |
|
(3) If artifact representation is a string name in the catalog, load the Artifact from the catalog. |
|
(4) If artifact representation is a json string, create a dictionary representation from the string and build an Artifact object from it. |
|
(5) Otherwise, check that the artifact representation is a dictionary and build an Artifact object from it. |
|
""" |
|
if isinstance(artifact_rep, Artifact): |
|
return artifact_rep, None |
|
|
|
|
|
if isinstance(artifact_rep, str) and Artifact.is_artifact_file(artifact_rep): |
|
return Artifact.load(artifact_rep), None |
|
|
|
|
|
if isinstance(artifact_rep, str): |
|
name, _ = separate_inside_and_outside_square_brackets(artifact_rep) |
|
if is_name_legal_for_catalog(name): |
|
artifactory, artifact_rep, args = get_artifactory_name_and_args( |
|
name=artifact_rep |
|
) |
|
return artifactory.get_with_overwrite( |
|
artifact_rep, overwrite_args=args |
|
), artifactory |
|
|
|
|
|
if isinstance(artifact_rep, str): |
|
artifact_rep = json.loads(artifact_rep) |
|
|
|
return Artifact.from_dict(artifact_rep), None |
|
|
|
|
|
def get_artifactory_name_and_args( |
|
name: str, artifactories: Optional[List[Artifactory]] = None |
|
): |
|
name, args = separate_inside_and_outside_square_brackets(name) |
|
|
|
if artifactories is None: |
|
artifactories = list(Artifactories()) |
|
|
|
for artifactory in artifactories: |
|
if name in artifactory: |
|
return artifactory, name, args |
|
|
|
raise UnitxtArtifactNotFoundError(name, artifactories) |
|
|
|
|
|
def verbosed_fetch_artifact(identifier): |
|
artifact, artifactory = fetch_artifact(identifier) |
|
logger.debug(f"Artifact {identifier} is fetched from {artifactory}") |
|
return artifact |
|
|
|
|
|
def reset_artifacts_json_cache(): |
|
artifacts_json_cache.cache_clear() |
|
|
|
|
|
def maybe_recover_artifact(artifact): |
|
if isinstance(artifact, str): |
|
return verbosed_fetch_artifact(artifact) |
|
|
|
return artifact |
|
|
|
|
|
def register_all_artifacts(path): |
|
for loader, module_name, _is_pkg in pkgutil.walk_packages(path): |
|
logger.info(__name__) |
|
if module_name == __name__: |
|
continue |
|
logger.info(f"Loading {module_name}") |
|
|
|
module = loader.find_module(module_name).load_module(module_name) |
|
|
|
|
|
for _name, obj in inspect.getmembers(module): |
|
|
|
if inspect.isclass(obj): |
|
|
|
if issubclass(obj, Artifact) and obj is not Artifact: |
|
logger.info(obj) |
|
|
|
|
|
def get_artifacts_data_classification(artifact: str) -> Optional[List[str]]: |
|
"""Loads given artifact's data classification policy from an environment variable. |
|
|
|
Args: |
|
artifact (str): Name of the artifact which the data classification policy |
|
should be retrieved for. For example "metrics.accuracy". |
|
|
|
Returns: |
|
Optional[List[str]] - Data classification policies for the specified artifact |
|
if they were found, or None otherwise. |
|
""" |
|
data_classification = settings.data_classification_policy |
|
if data_classification is None: |
|
return None |
|
|
|
error_msg = ( |
|
f"If specified, the value of 'UNITXT_DATA_CLASSIFICATION_POLICY' " |
|
f"should be a valid json dictionary. Got '{data_classification}' " |
|
f"instead." |
|
) |
|
|
|
try: |
|
data_classification = json.loads(data_classification) |
|
except json.decoder.JSONDecodeError as e: |
|
raise RuntimeError(error_msg) from e |
|
|
|
if not isinstance(data_classification, dict): |
|
raise RuntimeError(error_msg) |
|
|
|
for artifact_name, artifact_data_classifications in data_classification.items(): |
|
if ( |
|
not isinstance(artifact_name, str) |
|
or not isinstance(artifact_data_classifications, list) |
|
or not all( |
|
isinstance(artifact_data_classification, str) |
|
for artifact_data_classification in artifact_data_classifications |
|
) |
|
): |
|
raise RuntimeError( |
|
"'UNITXT_DATA_CLASSIFICATION_POLICY' should be of type " |
|
"'Dict[str, List[str]]', where a artifact's name is a key, and a " |
|
"value is a list of data classifications used by that artifact." |
|
) |
|
|
|
if artifact not in data_classification.keys(): |
|
return None |
|
|
|
return data_classification.get(artifact) |
|
|