Datasets:

ArXiv:
Elron commited on
Commit
300113f
1 Parent(s): 160a426

Upload metrics.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. metrics.py +92 -2
metrics.py CHANGED
@@ -1,6 +1,7 @@
1
  import uuid
2
  from abc import ABC, abstractmethod
3
- from dataclasses import dataclass, field
 
4
  from typing import Any, Dict, Generator, List, Optional
5
 
6
  import evaluate
@@ -9,7 +10,6 @@ import numpy
9
 
10
  from .operator import (
11
  MultiStreamOperator,
12
- SequntialOperator,
13
  SingleStreamOperator,
14
  StreamingOperator,
15
  StreamInstanceOperator,
@@ -353,3 +353,93 @@ class Bleu(HuggingfaceMetric):
353
  metric_name = "bleu"
354
  main_score = "bleu"
355
  scale = 1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import uuid
2
  from abc import ABC, abstractmethod
3
+ from collections import Counter
4
+ from dataclasses import field
5
  from typing import Any, Dict, Generator, List, Optional
6
 
7
  import evaluate
 
10
 
11
  from .operator import (
12
  MultiStreamOperator,
 
13
  SingleStreamOperator,
14
  StreamingOperator,
15
  StreamInstanceOperator,
 
353
  metric_name = "bleu"
354
  main_score = "bleu"
355
  scale = 1.0
356
+
357
+
358
+ class CustomF1(GlobalMetric):
359
+ main_score = "f1_micro"
360
+
361
+ @abstractmethod
362
+ def get_element_group(self, element):
363
+ pass
364
+
365
+ @abstractmethod
366
+ def get_element_representation(self, element):
367
+ pass
368
+
369
+ def group_elements(self, l):
370
+ return {
371
+ k: Counter([self.get_element_representation(value) for value in l if self.get_element_group(value) == k])
372
+ for k in set([self.get_element_group(e) for e in l])
373
+ }
374
+
375
+ def calculate_groups_ratio(self, actual_group, total_group):
376
+ return sum([min(actual_group[k], total_group[k]) for k in actual_group.keys()]), sum(actual_group.values())
377
+
378
+ def f1(self, pn, pd, rn, rd):
379
+ precision = 1.0 if pn == 0 and pd == 0 else pn / pd
380
+ recall = 1.0 if rn == 0 and rd == 0 else rn / rd
381
+ try:
382
+ return 2 * precision * recall / (precision + recall)
383
+ except ZeroDivisionError:
384
+ return 0.0
385
+
386
+ def compute(self, references: List[Any], predictions: List[Any]) -> dict:
387
+ # in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
388
+ if isinstance(references[0], list) and isinstance(references[0][0], list):
389
+ references = [element[0] for element in references]
390
+
391
+ assert len(references) == len(predictions), (
392
+ f"references size ({len(references)})" f" doesn't mach predictions sise ({len(references)})."
393
+ )
394
+ groups_statistics = dict()
395
+ for references_batch, predictions_batch in zip(references, predictions):
396
+ grouped_references = self.group_elements(references_batch)
397
+ grouped_predictions = self.group_elements(predictions_batch)
398
+ all_groups = set(grouped_references.keys()).union(grouped_predictions.keys())
399
+ for group in all_groups:
400
+ if group not in groups_statistics:
401
+ groups_statistics[group] = {
402
+ "precision_numerator": 0,
403
+ "precision_denominator": 0,
404
+ "recall_numerator": 0,
405
+ "recall_denominator": 0,
406
+ }
407
+ references_by_group = grouped_references.get(group, Counter([]))
408
+ predictions_by_group = grouped_predictions.get(group, Counter([]))
409
+ pn, pd = self.calculate_groups_ratio(
410
+ actual_group=predictions_by_group, total_group=references_by_group
411
+ )
412
+ rn, rd = self.calculate_groups_ratio(
413
+ actual_group=references_by_group, total_group=predictions_by_group
414
+ )
415
+ groups_statistics[group]["precision_numerator"] += pn
416
+ groups_statistics[group]["precision_denominator"] += pd
417
+ groups_statistics[group]["recall_numerator"] += rn
418
+ groups_statistics[group]["recall_denominator"] += rd
419
+
420
+ result = {}
421
+ pn_total = pd_total = rn_total = rd_total = 0
422
+ for group in groups_statistics.keys():
423
+ pn, pd, rn, rd = (
424
+ groups_statistics[group]["precision_numerator"],
425
+ groups_statistics[group]["precision_denominator"],
426
+ groups_statistics[group]["recall_numerator"],
427
+ groups_statistics[group]["recall_denominator"],
428
+ )
429
+ result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
430
+ pn_total, pd_total, rn_total, rd_total = pn_total + pn, pd_total + pd, rn_total + rn, rd_total + rd
431
+ try:
432
+ result["f1_macro"] = sum(result.values()) / len(result.keys())
433
+ except ZeroDivisionError:
434
+ result["f1_macro"] = 1.0
435
+
436
+ result[f"f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
437
+ return result
438
+
439
+
440
+ class NER(CustomF1):
441
+ def get_element_group(self, element):
442
+ return element[1]
443
+
444
+ def get_element_representation(self, element):
445
+ return str(element)