Upload metric_utils.py with huggingface_hub
Browse files- metric_utils.py +146 -0
metric_utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Iterable, List
|
2 |
+
|
3 |
+
from datasets import Features, Value
|
4 |
+
|
5 |
+
from .operator import (
|
6 |
+
MultiStreamOperator,
|
7 |
+
SequentialOperatorInitilizer,
|
8 |
+
StreamInitializerOperator,
|
9 |
+
)
|
10 |
+
from .operators import (
|
11 |
+
Apply,
|
12 |
+
ApplyMetric,
|
13 |
+
ApplyOperatorsField,
|
14 |
+
FlattenInstances,
|
15 |
+
MergeStreams,
|
16 |
+
SplitByValue,
|
17 |
+
)
|
18 |
+
from .register import _reset_env_local_catalogs, register_all_artifacts
|
19 |
+
from .schema import UNITXT_DATASET_SCHEMA
|
20 |
+
from .stream import MultiStream, Stream
|
21 |
+
|
22 |
+
|
23 |
+
class MultiStreamScoreMean(MultiStreamOperator):
|
24 |
+
def aggegate_results(self, multi_stream: MultiStream):
|
25 |
+
scores = []
|
26 |
+
for stream in multi_stream.values():
|
27 |
+
instance = stream.peek()
|
28 |
+
scores.append(instance["score"]["global"]["score"])
|
29 |
+
|
30 |
+
from statistics import mean
|
31 |
+
|
32 |
+
return mean(scores)
|
33 |
+
|
34 |
+
def spread_results(self, stream: Stream, score: float):
|
35 |
+
for instance in stream:
|
36 |
+
instance["score"]["global"]["groups_mean_score"] = score
|
37 |
+
yield instance
|
38 |
+
|
39 |
+
def spread_results_one_stream(self, stream: Stream):
|
40 |
+
for instance in stream:
|
41 |
+
instance["score"]["global"]["groups_mean_score"] = instance["score"][
|
42 |
+
"global"
|
43 |
+
]["score"]
|
44 |
+
yield instance
|
45 |
+
|
46 |
+
def process(self, multi_stream: MultiStream) -> MultiStream:
|
47 |
+
result = {}
|
48 |
+
|
49 |
+
# optimization in to avoid double calculation of metrics
|
50 |
+
# when aggregating results, if there is only one stream.
|
51 |
+
if len(multi_stream) == 1:
|
52 |
+
for stream_name, stream in multi_stream.items():
|
53 |
+
result[stream_name] = Stream(
|
54 |
+
self.spread_results_one_stream, gen_kwargs={"stream": stream}
|
55 |
+
)
|
56 |
+
return MultiStream(result)
|
57 |
+
|
58 |
+
mean_score = self.aggegate_results(multi_stream)
|
59 |
+
result = {}
|
60 |
+
for stream_name, stream in multi_stream.items():
|
61 |
+
result[stream_name] = Stream(
|
62 |
+
self.spread_results, gen_kwargs={"stream": stream, "score": mean_score}
|
63 |
+
)
|
64 |
+
|
65 |
+
return MultiStream(result)
|
66 |
+
|
67 |
+
|
68 |
+
class FromPredictionsAndOriginalData(StreamInitializerOperator):
|
69 |
+
def zip(self, predictions, references):
|
70 |
+
for prediction, original in zip(predictions, references):
|
71 |
+
yield {**original, "prediction": prediction}
|
72 |
+
|
73 |
+
def process(
|
74 |
+
self, predictions: List[str], references: Iterable, split_name: str = "all"
|
75 |
+
) -> MultiStream:
|
76 |
+
return MultiStream(
|
77 |
+
{
|
78 |
+
split_name: Stream(
|
79 |
+
self.zip,
|
80 |
+
gen_kwargs={"predictions": predictions, "references": references},
|
81 |
+
)
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
# The additional_inputs field in the schema is defined as
|
87 |
+
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
|
88 |
+
# When receiving instances from this scheme, the keys and values are returned as two separate
|
89 |
+
# lists, and are converted to a dictionary.
|
90 |
+
|
91 |
+
|
92 |
+
def _from_key_value_pairs(key_value_list: Dict[str, list]) -> Dict[str, str]:
|
93 |
+
return dict(zip(key_value_list["key"], key_value_list["value"]))
|
94 |
+
|
95 |
+
|
96 |
+
class MetricRecipe(SequentialOperatorInitilizer):
|
97 |
+
calc_confidence_intervals: bool = True
|
98 |
+
|
99 |
+
def prepare(self):
|
100 |
+
register_all_artifacts()
|
101 |
+
self.steps = [
|
102 |
+
FromPredictionsAndOriginalData(),
|
103 |
+
Apply(
|
104 |
+
"additional_inputs",
|
105 |
+
function=_from_key_value_pairs,
|
106 |
+
to_field="additional_inputs",
|
107 |
+
),
|
108 |
+
ApplyOperatorsField(
|
109 |
+
operators_field="postprocessors",
|
110 |
+
),
|
111 |
+
SplitByValue(["group"]),
|
112 |
+
ApplyMetric(
|
113 |
+
"metrics",
|
114 |
+
calc_confidence_intervals=self.calc_confidence_intervals,
|
115 |
+
),
|
116 |
+
MultiStreamScoreMean(),
|
117 |
+
MergeStreams(),
|
118 |
+
]
|
119 |
+
|
120 |
+
|
121 |
+
UNITXT_METRIC_SCHEMA = Features(
|
122 |
+
{"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)}
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def _compute(
|
127 |
+
predictions: List[str],
|
128 |
+
references: Iterable,
|
129 |
+
flatten: bool = False,
|
130 |
+
split_name: str = "all",
|
131 |
+
calc_confidence_intervals: bool = True,
|
132 |
+
):
|
133 |
+
_reset_env_local_catalogs()
|
134 |
+
register_all_artifacts()
|
135 |
+
recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals)
|
136 |
+
|
137 |
+
multi_stream = recipe(
|
138 |
+
predictions=predictions, references=references, split_name=split_name
|
139 |
+
)
|
140 |
+
|
141 |
+
if flatten:
|
142 |
+
operator = FlattenInstances()
|
143 |
+
multi_stream = operator(multi_stream)
|
144 |
+
|
145 |
+
stream = multi_stream[split_name]
|
146 |
+
return list(stream)
|