Upload loaders.py with huggingface_hub
Browse files- loaders.py +33 -14
loaders.py
CHANGED
@@ -60,7 +60,7 @@ class Loader(SourceOperator):
|
|
60 |
# loader may ingore this. In any case, the recipe, will limit the number of instances in the returned
|
61 |
# stream, after load is complete.
|
62 |
loader_limit: int = None
|
63 |
-
|
64 |
|
65 |
|
66 |
class LoadHF(Loader):
|
@@ -71,21 +71,27 @@ class LoadHF(Loader):
|
|
71 |
data_files: Optional[
|
72 |
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
73 |
] = None
|
74 |
-
streaming: bool =
|
75 |
|
76 |
def process(self):
|
77 |
try:
|
78 |
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
if self.split is not None:
|
90 |
dataset = {self.split: dataset}
|
91 |
except (
|
@@ -122,15 +128,23 @@ class LoadCSV(Loader):
|
|
122 |
files: Dict[str, str]
|
123 |
chunksize: int = 1000
|
124 |
|
125 |
-
def
|
126 |
for chunk in pd.read_csv(file, chunksize=self.chunksize):
|
127 |
for _index, row in chunk.iterrows():
|
128 |
yield row.to_dict()
|
129 |
|
130 |
def process(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
return MultiStream(
|
132 |
{
|
133 |
-
name:
|
134 |
for name, file in self.files.items()
|
135 |
}
|
136 |
)
|
@@ -155,6 +169,9 @@ class LoadFromKaggle(Loader):
|
|
155 |
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
|
156 |
)
|
157 |
|
|
|
|
|
|
|
158 |
def prepare(self):
|
159 |
super().prepare()
|
160 |
from opendatasets import download
|
@@ -246,6 +263,8 @@ class LoadFromIBMCloud(Loader):
|
|
246 |
assert (
|
247 |
self.aws_secret_access_key is not None
|
248 |
), f"Please set {self.aws_secret_access_key_env} environmental variable"
|
|
|
|
|
249 |
|
250 |
def process(self):
|
251 |
cos = ibm_boto3.resource(
|
|
|
60 |
# loader may ingore this. In any case, the recipe, will limit the number of instances in the returned
|
61 |
# stream, after load is complete.
|
62 |
loader_limit: int = None
|
63 |
+
streaming: bool = False
|
64 |
|
65 |
|
66 |
class LoadHF(Loader):
|
|
|
71 |
data_files: Optional[
|
72 |
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
73 |
] = None
|
74 |
+
streaming: bool = False
|
75 |
|
76 |
def process(self):
|
77 |
try:
|
78 |
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
|
79 |
+
try:
|
80 |
+
dataset = hf_load_dataset(
|
81 |
+
self.path,
|
82 |
+
name=self.name,
|
83 |
+
data_dir=self.data_dir,
|
84 |
+
data_files=self.data_files,
|
85 |
+
streaming=self.streaming,
|
86 |
+
cache_dir=None if self.streaming else dir_to_be_deleted,
|
87 |
+
split=self.split,
|
88 |
+
trust_remote_code=settings.allow_unverified_code,
|
89 |
+
)
|
90 |
+
except ValueError as e:
|
91 |
+
if "trust_remote_code" in str(e):
|
92 |
+
raise ValueError(
|
93 |
+
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment vairable: UNITXT_ALLOW_UNVERIFIED_CODE."
|
94 |
+
) from e
|
95 |
if self.split is not None:
|
96 |
dataset = {self.split: dataset}
|
97 |
except (
|
|
|
128 |
files: Dict[str, str]
|
129 |
chunksize: int = 1000
|
130 |
|
131 |
+
def stream_csv(self, file):
|
132 |
for chunk in pd.read_csv(file, chunksize=self.chunksize):
|
133 |
for _index, row in chunk.iterrows():
|
134 |
yield row.to_dict()
|
135 |
|
136 |
def process(self):
|
137 |
+
if self.streaming:
|
138 |
+
return MultiStream(
|
139 |
+
{
|
140 |
+
name: Stream(generator=self.stream_csv, gen_kwargs={"file": file})
|
141 |
+
for name, file in self.files.items()
|
142 |
+
}
|
143 |
+
)
|
144 |
+
|
145 |
return MultiStream(
|
146 |
{
|
147 |
+
name: pd.read_csv(file).to_dict("records")
|
148 |
for name, file in self.files.items()
|
149 |
}
|
150 |
)
|
|
|
169 |
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
|
170 |
)
|
171 |
|
172 |
+
if self.streaming:
|
173 |
+
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
|
174 |
+
|
175 |
def prepare(self):
|
176 |
super().prepare()
|
177 |
from opendatasets import download
|
|
|
263 |
assert (
|
264 |
self.aws_secret_access_key is not None
|
265 |
), f"Please set {self.aws_secret_access_key_env} environmental variable"
|
266 |
+
if self.streaming:
|
267 |
+
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
|
268 |
|
269 |
def process(self):
|
270 |
cos = ibm_boto3.resource(
|