ashvardanian
commited on
Commit
•
b003e9f
1
Parent(s):
7b2d061
Use ONNX
Browse files
main.py
CHANGED
@@ -2,7 +2,9 @@
|
|
2 |
from os import PathLike, listdir, remove
|
3 |
from os.path import isfile, join, exists
|
4 |
from mimetypes import guess_type
|
5 |
-
from base64 import b64encode
|
|
|
|
|
6 |
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
@@ -10,7 +12,7 @@ from PIL import Image
|
|
10 |
from PIL import ImageFile
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
-
from uform import
|
14 |
from usearch.index import Index, MetricKind
|
15 |
from usearch.io import save_matrix, load_matrix
|
16 |
|
@@ -32,67 +34,82 @@ def image_to_data(path: PathLike) -> str:
|
|
32 |
if not exists(path):
|
33 |
raise FileNotFoundError
|
34 |
mime, _ = guess_type(path)
|
35 |
-
with open(path,
|
36 |
data = fp.read()
|
37 |
-
data64 = b64encode(data).decode(
|
38 |
-
return f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def trim_extension(filename: str) -> str:
|
42 |
-
return filename.rsplit(
|
43 |
|
44 |
|
45 |
-
names = sorted(f for f in listdir(
|
46 |
names = [trim_extension(f) for f in names]
|
47 |
|
48 |
-
table =
|
49 |
-
|
50 |
-
|
51 |
-
table = table.
|
|
|
52 |
table.reset_index()
|
53 |
-
table.to_csv(
|
54 |
|
55 |
-
names = list(set(table[
|
56 |
-
names_to_delete = [f for f in listdir(
|
57 |
-
|
58 |
-
names = list(table['photo_id'])
|
59 |
|
60 |
if len(names_to_delete) > 0:
|
61 |
-
print(f
|
62 |
for name in names_to_delete:
|
63 |
-
remove(join(
|
64 |
-
|
65 |
-
if not exists(
|
66 |
-
model =
|
|
|
|
|
|
|
|
|
67 |
vectors = []
|
68 |
|
69 |
-
for name in tqdm(names, desc=
|
70 |
-
image = Image.open(join(
|
71 |
-
image_data =
|
72 |
-
image_embedding = model.encode_image(image_data)
|
73 |
vectors.append(image_embedding)
|
74 |
|
75 |
image_mat = np.vstack(vectors)
|
76 |
-
save_matrix(image_mat,
|
77 |
|
78 |
-
if not exists(
|
79 |
|
80 |
datas = []
|
81 |
-
for name in tqdm(names, desc=
|
82 |
-
data = image_to_data(join(
|
83 |
datas.append(data)
|
84 |
|
85 |
-
with open(
|
86 |
-
f.write(
|
87 |
|
|
|
|
|
|
|
88 |
|
89 |
-
if not exists(
|
90 |
-
image_mat = load_matrix(
|
91 |
count = image_mat.shape[0]
|
92 |
ndim = image_mat.shape[1]
|
93 |
index = Index(ndim=ndim, metric=MetricKind.Cos)
|
94 |
|
95 |
-
for idx in tqdm(range(count), desc=
|
96 |
index.add(idx, image_mat[idx, :].flatten())
|
97 |
|
98 |
-
index.save(
|
|
|
2 |
from os import PathLike, listdir, remove
|
3 |
from os.path import isfile, join, exists
|
4 |
from mimetypes import guess_type
|
5 |
+
from base64 import b64encode, b64decode
|
6 |
+
from io import BytesIO
|
7 |
+
import re
|
8 |
|
9 |
import pandas as pd
|
10 |
import numpy as np
|
|
|
12 |
from PIL import ImageFile
|
13 |
from tqdm import tqdm
|
14 |
|
15 |
+
from uform import get_model_onnx
|
16 |
from usearch.index import Index, MetricKind
|
17 |
from usearch.io import save_matrix, load_matrix
|
18 |
|
|
|
34 |
if not exists(path):
|
35 |
raise FileNotFoundError
|
36 |
mime, _ = guess_type(path)
|
37 |
+
with open(path, "rb") as fp:
|
38 |
data = fp.read()
|
39 |
+
data64 = b64encode(data).decode("utf-8")
|
40 |
+
return f"data:{mime}/jpg;base64,{data64}"
|
41 |
+
|
42 |
+
|
43 |
+
def data_to_image(data_uri: str) -> Image:
|
44 |
+
"""Convert a base64-encoded data URI to a Pillow Image."""
|
45 |
+
base64_str = re.search(r"base64,(.*)", data_uri).group(1)
|
46 |
+
image_data = b64decode(base64_str)
|
47 |
+
image = Image.open(BytesIO(image_data))
|
48 |
+
return image
|
49 |
|
50 |
|
51 |
def trim_extension(filename: str) -> str:
|
52 |
+
return filename.rsplit(".", 1)[0]
|
53 |
|
54 |
|
55 |
+
names = sorted(f for f in listdir("images") if is_image(join("images", f)))
|
56 |
names = [trim_extension(f) for f in names]
|
57 |
|
58 |
+
table = (
|
59 |
+
pd.read_table("images.tsv") if exists("images.tsv") else pd.read_table("images.csv")
|
60 |
+
)
|
61 |
+
table = table[table["photo_id"].isin(names)]
|
62 |
+
table = table.sort_values("photo_id")
|
63 |
table.reset_index()
|
64 |
+
table.to_csv("images.csv", index=False)
|
65 |
|
66 |
+
names = list(set(table["photo_id"]).intersection(names))
|
67 |
+
names_to_delete = [f for f in listdir("images") if trim_extension(f) not in names]
|
68 |
+
names = list(table["photo_id"])
|
|
|
69 |
|
70 |
if len(names_to_delete) > 0:
|
71 |
+
print(f"Plans to delete: {len(names_to_delete)} images without metadata")
|
72 |
for name in names_to_delete:
|
73 |
+
remove(join("images", name))
|
74 |
+
|
75 |
+
if not exists("images.fbin") and 0:
|
76 |
+
model, processor = get_model_onnx(
|
77 |
+
"unum-cloud/uform-vl-english-small",
|
78 |
+
device="cpu",
|
79 |
+
dtype="fp32",
|
80 |
+
)
|
81 |
vectors = []
|
82 |
|
83 |
+
for name in tqdm(names, desc="Vectorizing images"):
|
84 |
+
image = Image.open(join("images", name + ".jpg"))
|
85 |
+
image_data = processor.preprocess_image(image)
|
86 |
+
image_embedding = model.encode_image(image_data)
|
87 |
vectors.append(image_embedding)
|
88 |
|
89 |
image_mat = np.vstack(vectors)
|
90 |
+
save_matrix(image_mat, "images.fbin")
|
91 |
|
92 |
+
if not exists("images.base64.txt"):
|
93 |
|
94 |
datas = []
|
95 |
+
for name in tqdm(names, desc="Encoding images"):
|
96 |
+
data = image_to_data(join("images", name + ".jpg"))
|
97 |
datas.append(data)
|
98 |
|
99 |
+
with open("images.base64.txt", "w") as f:
|
100 |
+
f.write("\n".join(datas))
|
101 |
|
102 |
+
if not exists("images.names.txt"):
|
103 |
+
with open("images.names.txt", "w") as f:
|
104 |
+
f.write("\n".join(names))
|
105 |
|
106 |
+
if not exists("images.usearch"):
|
107 |
+
image_mat = load_matrix("images.fbin")
|
108 |
count = image_mat.shape[0]
|
109 |
ndim = image_mat.shape[1]
|
110 |
index = Index(ndim=ndim, metric=MetricKind.Cos)
|
111 |
|
112 |
+
for idx in tqdm(range(count), desc="Indexing vectors"):
|
113 |
index.add(idx, image_mat[idx, :].flatten())
|
114 |
|
115 |
+
index.save("images.usearch")
|