ashvardanian commited on
Commit
b003e9f
1 Parent(s): 7b2d061
Files changed (1) hide show
  1. main.py +52 -35
main.py CHANGED
@@ -2,7 +2,9 @@
2
  from os import PathLike, listdir, remove
3
  from os.path import isfile, join, exists
4
  from mimetypes import guess_type
5
- from base64 import b64encode
 
 
6
 
7
  import pandas as pd
8
  import numpy as np
@@ -10,7 +12,7 @@ from PIL import Image
10
  from PIL import ImageFile
11
  from tqdm import tqdm
12
 
13
- from uform import get_model
14
  from usearch.index import Index, MetricKind
15
  from usearch.io import save_matrix, load_matrix
16
 
@@ -32,67 +34,82 @@ def image_to_data(path: PathLike) -> str:
32
  if not exists(path):
33
  raise FileNotFoundError
34
  mime, _ = guess_type(path)
35
- with open(path, 'rb') as fp:
36
  data = fp.read()
37
- data64 = b64encode(data).decode('utf-8')
38
- return f'data:{mime}/jpg;base64,{data64}'
 
 
 
 
 
 
 
 
39
 
40
 
41
  def trim_extension(filename: str) -> str:
42
- return filename.rsplit('.', 1)[0]
43
 
44
 
45
- names = sorted(f for f in listdir('images') if is_image(join('images', f)))
46
  names = [trim_extension(f) for f in names]
47
 
48
- table = pd.read_table('images.tsv') if exists(
49
- 'images.tsv') else pd.read_table('images.csv')
50
- table = table[table['photo_id'].isin(names)]
51
- table = table.sort_values('photo_id')
 
52
  table.reset_index()
53
- table.to_csv('images.csv', index=False)
54
 
55
- names = list(set(table['photo_id']).intersection(names))
56
- names_to_delete = [f for f in listdir(
57
- 'images') if trim_extension(f) not in names]
58
- names = list(table['photo_id'])
59
 
60
  if len(names_to_delete) > 0:
61
- print(f'Plans to delete: {len(names_to_delete)} images without metadata')
62
  for name in names_to_delete:
63
- remove(join('images', name))
64
-
65
- if not exists('images.fbin'):
66
- model = get_model('unum-cloud/uform-vl-multilingual')
 
 
 
 
67
  vectors = []
68
 
69
- for name in tqdm(names, desc='Vectorizing images'):
70
- image = Image.open(join('images', name + '.jpg'))
71
- image_data = model.preprocess_image(image)
72
- image_embedding = model.encode_image(image_data).detach().numpy()
73
  vectors.append(image_embedding)
74
 
75
  image_mat = np.vstack(vectors)
76
- save_matrix(image_mat, 'images.fbin')
77
 
78
- if not exists('images.txt'):
79
 
80
  datas = []
81
- for name in tqdm(names, desc='Encoding images'):
82
- data = image_to_data(join('images', name + '.jpg'))
83
  datas.append(data)
84
 
85
- with open('images.txt', 'w') as f:
86
- f.write('\n'.join(datas))
87
 
 
 
 
88
 
89
- if not exists('images.usearch'):
90
- image_mat = load_matrix('images.fbin')
91
  count = image_mat.shape[0]
92
  ndim = image_mat.shape[1]
93
  index = Index(ndim=ndim, metric=MetricKind.Cos)
94
 
95
- for idx in tqdm(range(count), desc='Indexing vectors'):
96
  index.add(idx, image_mat[idx, :].flatten())
97
 
98
- index.save('images.usearch')
 
2
  from os import PathLike, listdir, remove
3
  from os.path import isfile, join, exists
4
  from mimetypes import guess_type
5
+ from base64 import b64encode, b64decode
6
+ from io import BytesIO
7
+ import re
8
 
9
  import pandas as pd
10
  import numpy as np
 
12
  from PIL import ImageFile
13
  from tqdm import tqdm
14
 
15
+ from uform import get_model_onnx
16
  from usearch.index import Index, MetricKind
17
  from usearch.io import save_matrix, load_matrix
18
 
 
34
  if not exists(path):
35
  raise FileNotFoundError
36
  mime, _ = guess_type(path)
37
+ with open(path, "rb") as fp:
38
  data = fp.read()
39
+ data64 = b64encode(data).decode("utf-8")
40
+ return f"data:{mime}/jpg;base64,{data64}"
41
+
42
+
43
+ def data_to_image(data_uri: str) -> Image:
44
+ """Convert a base64-encoded data URI to a Pillow Image."""
45
+ base64_str = re.search(r"base64,(.*)", data_uri).group(1)
46
+ image_data = b64decode(base64_str)
47
+ image = Image.open(BytesIO(image_data))
48
+ return image
49
 
50
 
51
  def trim_extension(filename: str) -> str:
52
+ return filename.rsplit(".", 1)[0]
53
 
54
 
55
+ names = sorted(f for f in listdir("images") if is_image(join("images", f)))
56
  names = [trim_extension(f) for f in names]
57
 
58
+ table = (
59
+ pd.read_table("images.tsv") if exists("images.tsv") else pd.read_table("images.csv")
60
+ )
61
+ table = table[table["photo_id"].isin(names)]
62
+ table = table.sort_values("photo_id")
63
  table.reset_index()
64
+ table.to_csv("images.csv", index=False)
65
 
66
+ names = list(set(table["photo_id"]).intersection(names))
67
+ names_to_delete = [f for f in listdir("images") if trim_extension(f) not in names]
68
+ names = list(table["photo_id"])
 
69
 
70
  if len(names_to_delete) > 0:
71
+ print(f"Plans to delete: {len(names_to_delete)} images without metadata")
72
  for name in names_to_delete:
73
+ remove(join("images", name))
74
+
75
+ if not exists("images.fbin") and 0:
76
+ model, processor = get_model_onnx(
77
+ "unum-cloud/uform-vl-english-small",
78
+ device="cpu",
79
+ dtype="fp32",
80
+ )
81
  vectors = []
82
 
83
+ for name in tqdm(names, desc="Vectorizing images"):
84
+ image = Image.open(join("images", name + ".jpg"))
85
+ image_data = processor.preprocess_image(image)
86
+ image_embedding = model.encode_image(image_data)
87
  vectors.append(image_embedding)
88
 
89
  image_mat = np.vstack(vectors)
90
+ save_matrix(image_mat, "images.fbin")
91
 
92
+ if not exists("images.base64.txt"):
93
 
94
  datas = []
95
+ for name in tqdm(names, desc="Encoding images"):
96
+ data = image_to_data(join("images", name + ".jpg"))
97
  datas.append(data)
98
 
99
+ with open("images.base64.txt", "w") as f:
100
+ f.write("\n".join(datas))
101
 
102
+ if not exists("images.names.txt"):
103
+ with open("images.names.txt", "w") as f:
104
+ f.write("\n".join(names))
105
 
106
+ if not exists("images.usearch"):
107
+ image_mat = load_matrix("images.fbin")
108
  count = image_mat.shape[0]
109
  ndim = image_mat.shape[1]
110
  index = Index(ndim=ndim, metric=MetricKind.Cos)
111
 
112
+ for idx in tqdm(range(count), desc="Indexing vectors"):
113
  index.add(idx, image_mat[idx, :].flatten())
114
 
115
+ index.save("images.usearch")