Datasets:

File size: 4,402 Bytes
60d7b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1d0b6
60d7b90
0e1d0b6
 
93f7079
60d7b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1d0b6
60d7b90
 
 
 
0e1d0b6
93f7079
 
 
 
 
0e1d0b6
60d7b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Survey Variable Identification (SV-Ident) Corpus."""

import csv
import random

import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@misc{sv-ident,
    author={vadis-project},
    title={SV-Ident},
    year={2022},
    url={https://github.com/vadis-project/sv-ident},
    }
"""

_DESCRIPTION = """\
The SV-Ident corpus (version 0.3) is a collection of 4,248 expert-annotated English
and German sentences from social science publications, supporting the task of
multi-label text classification.
"""

_HOMEPAGE = "https://github.com/vadis-project/sv-ident"

# TODO: Add the licence
# _LICENSE = ""

_URL = "https://raw.githubusercontent.com/vadis-project/sv-ident/a8e71bba570f628c460e2b542d4cc645e4eb7d03/data/train/"
_URLS = {
    "train": _URL+"train.tsv",
    "dev": _URL+"val.tsv",
#    "trial": "https://github.com/vadis-project/sv-ident/tree/9962c3274444ce84c59d42e2a6f8c0958ed15a26/data/trial",
}


class SVIdent(datasets.GeneratorBasedBuilder):
    """Survey Variable Identification (SV-Ident) Corpus."""

    VERSION = datasets.Version("0.3.0")

    def _info(self):
        features = datasets.Features(
            {
                "sentence": datasets.Value("string"),
                "is_variable": datasets.ClassLabel(names=["0", "1"]),
                "variable": datasets.Sequence(datasets.Value(dtype="string")),
                "research_data": datasets.Sequence(datasets.Value(dtype="string")),
                "doc_id": datasets.Value("string"),
                "uuid": datasets.Value("string"),
                "lang": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("sentence", "is_variable"),
            homepage=_HOMEPAGE,
            # license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_files = dl_manager.download(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": downloaded_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": downloaded_files["dev"],
                },
            )
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        data = []
        with open(filepath, newline="", encoding="utf-8") as csvfile:
            reader = csv.reader(csvfile, delimiter="\t")
            next(reader, None)  # skip the headers
            for row in reader:
                data.append(row)

        seed = 42
        random.seed(seed)
        random.shuffle(data)

        for id_, example in enumerate(data):
            sentence = example[0]
            is_variable = example[1]
            variable = example[2] if example[2] != "" else []
            if variable:
                variable = variable.split(";") if ";" in variable else [variable]
            research_data = example[3] if example[3] != "" else []
            if research_data:
                research_data = research_data.split(";") if ";" in research_data else [research_data]
            doc_id = example[4]
            uuid = example[5]
            lang = example[6]

            yield id_, {
                "sentence": sentence,
                "is_variable": is_variable,
                "variable": variable,
                "research_data": research_data,
                "doc_id": doc_id,
                "uuid": uuid,
                "lang": lang,
            }