--- dataset_info: features: - name: image_id dtype: string - name: image dtype: image - name: objects struct: - name: bbox sequence: sequence: float32 - name: categories sequence: class_label: names: '0': person '1': bicycle '2': car '3': motorcycle '4': airplane '5': bus '6': train '7': truck '8': boat '9': traffic light '10': fire hydrant '11': stop sign '12': parking meter '13': bench '14': bird '15': cat '16': dog '17': horse '18': sheep '19': cow '20': elephant '21': bear '22': zebra '23': giraffe '24': backpack '25': umbrella '26': handbag '27': tie '28': suitcase '29': frisbee '30': skis '31': snowboard '32': sports ball '33': kite '34': baseball bat '35': baseball glove '36': skateboard '37': surfboard '38': tennis racket '39': bottle '40': wine glass '41': cup '42': fork '43': knife '44': spoon '45': bowl '46': banana '47': apple '48': sandwich '49': orange '50': broccoli '51': carrot '52': hot dog '53': pizza '54': donut '55': cake '56': chair '57': couch '58': potted plant '59': bed '60': dining table '61': toilet '62': tv '63': laptop '64': mouse '65': remote '66': keyboard '67': cell phone '68': microwave '69': oven '70': toaster '71': sink '72': refrigerator '73': book '74': clock '75': vase '76': scissors '77': teddy bear '78': hair drier '79': toothbrush - name: area sequence: float32 - name: iscrowd sequence: bool - name: issues list: - name: confidence dtype: float64 - name: description dtype: 'null' - name: issue_type dtype: string splits: - name: train num_bytes: 13410501369 num_examples: 82081 - name: validation num_bytes: 6593725253 num_examples: 40137 - name: test num_bytes: 6653522091 num_examples: 40775 download_size: 26604054770 dataset_size: 26657748713 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* task_categories: - object-detection --- [![Visualize Dataset on Visual Layer](https://img.shields.io/badge/Visualize%20on-%20Visual%20Layer-purple?style=for-the-badge&logo=numpy)](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1) # COCO-2014-VL-Enriched An enriched version of the COCO 2014 dataset with label issues! The label issues helps to curate a cleaner and leaner dataset. ## Description The dataset consists of 6 columns: + `image_id`: The original image filename from the COCO dataset. + `image`: Image data in the form of PIL Image. + `label_bbox`: Bounding box annotations from the COCO dataset. Consists of bounding box coordinates, confidence scores, and labels for the bounding box generated using object detection models. + `issues`: Quality issues found such as duplicate, mislabeled, dark, blurry, bright, and outlier images. ## Usage This dataset can be used with the Hugging Face Datasets library.: ```python import datasets ds = datasets.load_dataset("visual-layer/coco-2014-vl-enriched") ``` More in this [notebook](usage.ipynb). ## Interactive Visualization Visual Layer provides a platform to interactively visualize a dataset and highlight quality issues such as duplicates, mislabels, outliers, etc. Check it out [here](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1). No sign-up required.
Visualize Dataset on Visual Layer
## License & Disclaimer We provide no warranty on the dataset, and the user takes full responsibility for the usage of the dataset. By using the dataset, you agree to the terms of the ImageNet-1K dataset license. ## About Visual Layer
site blog github slack linkedin youtube twitter
logo
Copyright © 2024 Visual Layer. All rights reserved.