updated model card
Browse files
README.md
CHANGED
@@ -7,6 +7,8 @@ license: cc-by-4.0
|
|
7 |
|
8 |
# tinyroberta-squad2
|
9 |
|
|
|
|
|
10 |
## Overview
|
11 |
**Language model:** tinyroberta-squad2
|
12 |
**Language:** English
|
@@ -38,24 +40,17 @@ This model was distilled using the TinyBERT approach described in [this paper](h
|
|
38 |
Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
|
39 |
Secondly, we have performed task-specific distillation with [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) as the teacher for prediction layer distillation.
|
40 |
|
41 |
-
##
|
42 |
-
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
"f1": 81.9198998536977,
|
47 |
|
48 |
-
|
49 |
-
"
|
50 |
-
|
51 |
-
"
|
52 |
-
"NoAns_exact": 81.17746005046257,
|
53 |
-
"NoAns_f1": 81.17746005046257,
|
54 |
-
"NoAns_total": 5945
|
55 |
```
|
56 |
|
57 |
-
## Usage
|
58 |
-
|
59 |
### In Transformers
|
60 |
```python
|
61 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
@@ -75,54 +70,53 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
75 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
```
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
```python
|
81 |
-
from farm.modeling.adaptive_model import AdaptiveModel
|
82 |
-
from farm.modeling.tokenization import Tokenizer
|
83 |
-
from farm.infer import Inferencer
|
84 |
-
|
85 |
-
model_name = "deepset/tinyroberta-squad2"
|
86 |
-
|
87 |
-
# a) Get predictions
|
88 |
-
nlp = Inferencer.load(model_name, task_type="question_answering")
|
89 |
-
QA_input = [{"questions": ["Why is model conversion important?"],
|
90 |
-
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
91 |
-
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
|
92 |
|
93 |
-
# b) Load model & tokenizer
|
94 |
-
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
95 |
-
tokenizer = Tokenizer.load(model_name)
|
96 |
```
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
```
|
105 |
|
106 |
-
|
107 |
## Authors
|
108 |
-
Branden Chan
|
109 |
-
Timo
|
110 |
-
Malte Pietsch
|
111 |
-
Tanay Soni
|
112 |
-
Michel Bartels
|
113 |
|
114 |
## About us
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
121 |
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
122 |
-
- [FARM](https://github.com/deepset-ai/FARM)
|
123 |
-
- [Haystack](https://github.com/deepset-ai/haystack/)
|
124 |
|
125 |
-
Get in touch
|
|
|
|
|
|
|
|
|
|
|
126 |
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
127 |
|
128 |
-
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
7 |
|
8 |
# tinyroberta-squad2
|
9 |
|
10 |
+
This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
|
11 |
+
|
12 |
## Overview
|
13 |
**Language model:** tinyroberta-squad2
|
14 |
**Language:** English
|
|
|
40 |
Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
|
41 |
Secondly, we have performed task-specific distillation with [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) as the teacher for prediction layer distillation.
|
42 |
|
43 |
+
## Usage
|
|
|
44 |
|
45 |
+
### In Haystack
|
46 |
+
Haystack is an NLP framework by deepset. You can use this model in a Hasytack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
|
|
47 |
|
48 |
+
```python
|
49 |
+
reader = FARMReader(model_name_or_path="deepset/tinyroberta-squad2")
|
50 |
+
# or
|
51 |
+
reader = TransformersReader(model_name_or_path="deepset/tinyroberta-squad2")
|
|
|
|
|
|
|
52 |
```
|
53 |
|
|
|
|
|
54 |
### In Transformers
|
55 |
```python
|
56 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
70 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
```
|
72 |
|
73 |
+
## Performance
|
74 |
+
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
76 |
```
|
77 |
+
"exact": 78.69114798281817,
|
78 |
+
"f1": 81.9198998536977,
|
79 |
|
80 |
+
"total": 11873,
|
81 |
+
"HasAns_exact": 76.19770580296895,
|
82 |
+
"HasAns_f1": 82.66446878592329,
|
83 |
+
"HasAns_total": 5928,
|
84 |
+
"NoAns_exact": 81.17746005046257,
|
85 |
+
"NoAns_f1": 81.17746005046257,
|
86 |
+
"NoAns_total": 5945
|
87 |
```
|
88 |
|
|
|
89 |
## Authors
|
90 |
+
**Branden Chan:** branden.chan@deepset.ai
|
91 |
+
**Timo Möller:** timo.moeller@deepset.ai
|
92 |
+
**Malte Pietsch:** malte.pietsch@deepset.ai
|
93 |
+
**Tanay Soni:** tanay.soni@deepset.ai
|
94 |
+
**Michel Bartels:** michel.bartels@deepset.ai
|
95 |
|
96 |
## About us
|
97 |
+
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
98 |
+
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
99 |
+
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
|
100 |
+
</div>
|
101 |
+
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
102 |
+
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
|
103 |
+
</div>
|
104 |
+
</div>
|
105 |
+
|
106 |
+
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
|
107 |
+
|
108 |
+
|
109 |
+
Some of our other work:
|
110 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
|
111 |
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
112 |
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
|
|
|
|
113 |
|
114 |
+
## Get in touch and join the Haystack community
|
115 |
+
|
116 |
+
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>.
|
117 |
+
|
118 |
+
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join"><img alt="slack" class="h-7 inline-block m-0" style="margin: 0" src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/>community open to everyone!</a></strong></p>
|
119 |
+
|
120 |
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
121 |
|
122 |
+
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|