File size: 6,187 Bytes
74ab376
54343fc
74ab376
 
8962e17
 
 
 
 
 
 
 
 
 
 
 
54343fc
8962e17
54343fc
8962e17
54343fc
 
8962e17
54343fc
8962e17
54343fc
74ab376
 
a5fab99
74ab376
 
 
a6fd7d5
74ab376
f12bf99
 
e5f3d13
74ab376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f3d13
74ab376
e5f3d13
 
 
 
 
74ab376
e5f3d13
 
74ab376
e5f3d13
 
 
 
74ab376
e5f3d13
 
 
 
 
 
 
 
74ab376
 
 
e5f3d13
74ab376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f3d13
 
74ab376
e5f3d13
 
74ab376
 
e5f3d13
 
 
 
 
 
 
 
 
74ab376
 
 
 
 
 
 
 
 
e5f3d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ab376
e5f3d13
71ed0f1
e5f3d13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/xlm-roberta-base-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 74.0354
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWMxNWQ2ODJkNWIzZGQwOWI4OTZjYjU3ZDVjZGQzMjI5MzljNjliZTY4Mzk4YTk4OTMzZWYxZjUxYmZhYTBhZSIsInZlcnNpb24iOjF9.eEeFYYJ30BfJDd-JYfI1kjlxJrRF6OFtj2GnkTCOO4kqX31inFy8ptDWusVlLFsUphm4dNWfTKXC5e-gytLBDA
    - type: f1
      value: 77.1833
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjg4MjNkOTA4Y2I5OGFlYTk1NWZjMWFlNjI5M2Y0NGZhMThhN2M4YmY2Y2RhZjcwYzU0MGNjN2RkZDljZmJmNiIsInZlcnNpb24iOjF9.TX42YMXpH4e0qu7cC4ARDlZWSkd55dwwyeyFXmOlXERNnEicDuFBCsy8WHLaqQCLUkzODJ22Hw4zhv81rwnlAQ
---

# Multilingual XLM-RoBERTa base for Extractive QA on various languages 

## Overview
**Language model:** xlm-roberta-base  
**Language:** Multilingual  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0   
**Eval data:** SQuAD 2.0 dev set - German MLQA - German XQuAD   
**Code:**  See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
batch_size = 22*4
n_epochs = 2
max_seq_len=256,
doc_stride=128,
learning_rate=2e-5,
``` 

Corresponding experiment logs in mlflow: [link](https://public-mlflow.deepset.ai/#/experiments/2/runs/b25ec75e07614accb3f1ce03d43dbe08)


## Usage

### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. 
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/xlm-roberta-base-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/xlm-roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 73.91560683904657
"f1": 77.14103746689592
```

Evaluated on German MLQA: test-context-de-question-de.json
  "exact": 33.67279167589108
  "f1": 44.34437105434842
  "total": 4517

Evaluated on German XQuAD: xquad.de.json
"exact": 48.739495798319325
  "f1": 62.552615701071495
  "total": 1190

## Authors
Branden Chan: `branden.chan [at] deepset.ai`
Timo M枚ller: `timo.moeller [at] deepset.ai`
Malte Pietsch: `malte.pietsch [at] deepset.ai`
Tanay Soni: `tanay.soni [at] deepset.ai`

## About us

<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).

Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)