Shaltiel commited on
Commit
c70e2c8
1 Parent(s): 278c211

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ language:
5
+ - en
6
+ - he
7
+ tags:
8
+ - pretrained
9
+ inference:
10
+ parameters:
11
+ temperature: 0.7
12
+ ---
13
+
14
+ [<img src="dicta-logo.jpg" width="300px"/>](https://dicta.org.il)
15
+
16
+
17
+ # Model Card for DictaLM-2.0-AWQ
18
+
19
+ The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters specializing in Hebrew.
20
+
21
+ For full details of this model please read our [release blog post](https://example.com).
22
+
23
+ This model contains the GPTQ 4-bit quantized version of the base model [DictaLM-2.0](https://huggingface.co/dicta-il/dictalm2.0).
24
+
25
+ You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM-2.0` [here](https://huggingface.co/collections/dicta-il/dicta-lm-20-collection-661bbda397df671e4a430c27).
26
+
27
+ ## Example Code
28
+
29
+ Running this code requires ~5.1GB of GPU VRAM.
30
+
31
+ ```python
32
+ from transformers import pipeline
33
+
34
+ # This loads the model onto the GPU in bfloat16 precision
35
+ model = pipeline('text-generation', 'dicta-il/dictalm2.0-GPTQ', device_map='cuda')
36
+
37
+ # Sample few shot examples
38
+ prompt = """
39
+ עבר: הלכתי
40
+ עתיד: אלך
41
+
42
+ עבר: שמרתי
43
+ עתיד: אשמור
44
+
45
+ עבר: שמעתי
46
+ עתיד: אשמע
47
+
48
+ עבר: הבנתי
49
+ עתיד:
50
+ """
51
+
52
+ print(model(prompt.strip(), do_sample=False, max_new_tokens=4, stop_sequence='\n'))
53
+ # [{'generated_text': 'עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'}]
54
+ ```
55
+
56
+ ## Model Architecture
57
+
58
+ DictaLM-2.0 is based on the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) model with the following changes:
59
+ - An extended tokenizer with tokens for Hebrew, increasing the compression ratio
60
+ - Continued pretraining on over 190B tokens of naturally occuring text, 50% Hebrew and 50% English.
61
+
62
+ ## Notice
63
+
64
+ DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms.
65
+
66
+ ## Citation
67
+
68
+ If you use this model, please cite:
69
+
70
+ ```bibtex
71
+ [Will be added soon]
72
+ ```