File size: 2,028 Bytes
d9cae20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f87af8
 
 
 
 
d9cae20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ca717
c3b9055
24aa08b
2f87af8
d9cae20
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: dipawidia/xlnet-base-cased-product-review-sentiment-analysis
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# dipawidia/xlnet-base-cased-product-review-sentiment-analysis

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1085
- Train Accuracy: 0.9617
- Validation Loss: 0.1910
- Validation Accuracy: 0.9414
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3417     | 0.8491         | 0.1568          | 0.9449              | 0     |
| 0.1943     | 0.9235         | 0.1504          | 0.9466              | 1     |
| 0.1569     | 0.9404         | 0.1612          | 0.9466              | 2     |
| 0.1238     | 0.9572         | 0.1748          | 0.9475              | 3     |
| 0.1085     | 0.9617         | 0.1910          | 0.9414              | 4     |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Tokenizers 0.19.1