File size: 3,299 Bytes
8f616f2
 
 
 
 
 
 
 
 
6c5d6a4
8f616f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: l3cube-pune/hing-roberta
model-index:
- name: hing-roberta-CM-run-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hing-roberta-CM-run-3

This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6968
- Accuracy: 0.7565
- Precision: 0.7045
- Recall: 0.7064
- F1: 0.7050

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8232        | 1.0   | 497  | 0.7145          | 0.6620   | 0.6319    | 0.6585 | 0.6167 |
| 0.5799        | 2.0   | 994  | 0.7155          | 0.7203   | 0.6718    | 0.6928 | 0.6672 |
| 0.4152        | 3.0   | 1491 | 0.8823          | 0.7485   | 0.6962    | 0.7136 | 0.7022 |
| 0.2657        | 4.0   | 1988 | 1.4502          | 0.7465   | 0.6945    | 0.7037 | 0.6968 |
| 0.16          | 5.0   | 2485 | 2.0667          | 0.7465   | 0.6890    | 0.6827 | 0.6855 |
| 0.0945        | 6.0   | 2982 | 2.0120          | 0.7565   | 0.7091    | 0.7159 | 0.7103 |
| 0.0802        | 7.0   | 3479 | 2.2426          | 0.7686   | 0.7253    | 0.7065 | 0.7088 |
| 0.059         | 8.0   | 3976 | 2.3472          | 0.7425   | 0.6844    | 0.6881 | 0.6861 |
| 0.041         | 9.0   | 4473 | 2.4801          | 0.7666   | 0.7258    | 0.7144 | 0.7145 |
| 0.0307        | 10.0  | 4970 | 2.6317          | 0.7545   | 0.7102    | 0.7021 | 0.7019 |
| 0.0471        | 11.0  | 5467 | 2.4626          | 0.7364   | 0.6836    | 0.6780 | 0.6788 |
| 0.0282        | 12.0  | 5964 | 2.3949          | 0.7586   | 0.7067    | 0.7108 | 0.7087 |
| 0.0267        | 13.0  | 6461 | 2.4750          | 0.7465   | 0.6938    | 0.6921 | 0.6921 |
| 0.0274        | 14.0  | 6958 | 2.5942          | 0.7565   | 0.7022    | 0.7062 | 0.7039 |
| 0.0212        | 15.0  | 7455 | 2.6728          | 0.7404   | 0.6851    | 0.6893 | 0.6867 |
| 0.026         | 16.0  | 7952 | 2.6683          | 0.7565   | 0.7064    | 0.7122 | 0.7085 |
| 0.0175        | 17.0  | 8449 | 2.6646          | 0.7505   | 0.7030    | 0.7087 | 0.7039 |
| 0.0126        | 18.0  | 8946 | 2.6948          | 0.7565   | 0.7021    | 0.7039 | 0.7030 |
| 0.0065        | 19.0  | 9443 | 2.6984          | 0.7565   | 0.7045    | 0.7064 | 0.7050 |
| 0.0103        | 20.0  | 9940 | 2.6968          | 0.7565   | 0.7045    | 0.7064 | 0.7050 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1