File size: 3,299 Bytes
8f616f2 6c5d6a4 8f616f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: l3cube-pune/hing-roberta
model-index:
- name: hing-roberta-CM-run-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hing-roberta-CM-run-3
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6968
- Accuracy: 0.7565
- Precision: 0.7045
- Recall: 0.7064
- F1: 0.7050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8232 | 1.0 | 497 | 0.7145 | 0.6620 | 0.6319 | 0.6585 | 0.6167 |
| 0.5799 | 2.0 | 994 | 0.7155 | 0.7203 | 0.6718 | 0.6928 | 0.6672 |
| 0.4152 | 3.0 | 1491 | 0.8823 | 0.7485 | 0.6962 | 0.7136 | 0.7022 |
| 0.2657 | 4.0 | 1988 | 1.4502 | 0.7465 | 0.6945 | 0.7037 | 0.6968 |
| 0.16 | 5.0 | 2485 | 2.0667 | 0.7465 | 0.6890 | 0.6827 | 0.6855 |
| 0.0945 | 6.0 | 2982 | 2.0120 | 0.7565 | 0.7091 | 0.7159 | 0.7103 |
| 0.0802 | 7.0 | 3479 | 2.2426 | 0.7686 | 0.7253 | 0.7065 | 0.7088 |
| 0.059 | 8.0 | 3976 | 2.3472 | 0.7425 | 0.6844 | 0.6881 | 0.6861 |
| 0.041 | 9.0 | 4473 | 2.4801 | 0.7666 | 0.7258 | 0.7144 | 0.7145 |
| 0.0307 | 10.0 | 4970 | 2.6317 | 0.7545 | 0.7102 | 0.7021 | 0.7019 |
| 0.0471 | 11.0 | 5467 | 2.4626 | 0.7364 | 0.6836 | 0.6780 | 0.6788 |
| 0.0282 | 12.0 | 5964 | 2.3949 | 0.7586 | 0.7067 | 0.7108 | 0.7087 |
| 0.0267 | 13.0 | 6461 | 2.4750 | 0.7465 | 0.6938 | 0.6921 | 0.6921 |
| 0.0274 | 14.0 | 6958 | 2.5942 | 0.7565 | 0.7022 | 0.7062 | 0.7039 |
| 0.0212 | 15.0 | 7455 | 2.6728 | 0.7404 | 0.6851 | 0.6893 | 0.6867 |
| 0.026 | 16.0 | 7952 | 2.6683 | 0.7565 | 0.7064 | 0.7122 | 0.7085 |
| 0.0175 | 17.0 | 8449 | 2.6646 | 0.7505 | 0.7030 | 0.7087 | 0.7039 |
| 0.0126 | 18.0 | 8946 | 2.6948 | 0.7565 | 0.7021 | 0.7039 | 0.7030 |
| 0.0065 | 19.0 | 9443 | 2.6984 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
| 0.0103 | 20.0 | 9940 | 2.6968 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1
|