File size: 23,141 Bytes
55d9b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import os
from contextlib import nullcontext
import sys
import time
import pandas as pd
import torch
from tqdm.auto import tqdm

# from tqdm.notebook import tqdm
from model import Transformer
from plot_utils import (
    check_metrics,
    plot_1D_condition,
    plot_2D_condition,
    plot_3D_condition,
    plot_unconditional,
)
from tokenizer import SmilesTokenizer
import numpy as np
from typing import Dict, List, Tuple, Union
import re

from rdkit import Chem
from rdkit import DataStructs
from rdkit.Chem.Fingerprints import FingerprintMols

import logging

logger = logging.getLogger(__name__)


class Sampler:
    def __init__(
        self,
        load_path: str,
        device: str = "cpu",
        seed: int = 1337,
        dtype: str = "float16",
        compile: bool = True,
        quantize: bool = False,
    ) -> None:
        self.load_path = load_path
        self.device = device
        self.dtype = dtype
        self.compile = compile
        self.quantize = quantize
        self.seed = seed
        self._init_model()

    def _init_model(self):
        np.random.seed(self.seed)
        torch.cuda.manual_seed(self.seed)
        torch.backends.cuda.matmul.allow_tf32 = True  # allow tf32 on matmul
        torch.backends.cudnn.allow_tf32 = True  # allow tf32 on cudnn
        self.device_type = (
            "cuda" if "cuda" in self.device else "cpu"
        )  # for later use in torch.autocast
        ptdtype = {
            "float32": torch.float32,
            "bfloat16": torch.bfloat16,
            "float16": torch.float16,
        }[self.dtype]
        self.ptdtype = ptdtype

        self.ctx = self._autocast()
        # init from a model saved in a specific directory
        # ckpt_path = os.path.join(out_dir, "ckpt_full_dim=256.pt")
        self.model = Transformer.load(self.load_path, device=self.device)

        self.model.eval()
        if self.quantize:
            raise NotImplementedError("Not properly implemented for CPU / GPU")
            self.model = torch.ao.quantization.quantize_dynamic(
                self.model,  # the original model
                {torch.nn.Linear},  # a set of layers to dynamically quantize
                dtype=torch.qint8,
            )

        if self.compile:
            logger.info("Compiling the model...")
            self.model = torch.compile(self.model)  # requires PyTorch 2.0 (optional)

        self.model = self.model.to(self.device)
        # load the tokenizer
        self.tokenizer = SmilesTokenizer()

    def get_context(
        self,
        context_col: List[str],
        context_smi: str,
        num_examples: int = 50,
    ):
        """
        Returns a dictionary in the form of
        {
        "fragment": torch.tensor,
        "context": {
            "logp": torch.tensor,
            "sascore": torch.tensor,
            "mol_weight": torch.tensor
        }
        }


        When context_smi is set to a string, then the "fragment" field is populated.
        All of the properties listed in the context_col list is set to the keys and the values are set to a resonable range for each property.

        num_examples indicates how many values are sampled for each property.
        """
        output_dict = {"context": {}, "fragment": None}

        if context_smi is not None:
            logger.debug(
                f"context_smiles: {context_smi}",
            )
            # NOTE: Remove beginning [CLS] and end token [SEP]
            incorporate_selfie = self.tokenizer.encode(context_smi)[1:-1]

            context = torch.tensor(
                [incorporate_selfie] * num_examples,
                dtype=torch.long,
                device=self.device,
            )

            output_dict["fragment"] = context

        if context_col is None:
            return output_dict

        if "logp" in context_col:
            # context = 0.5 * torch.randint(
            #     -8, 14, (num_examples,), device=self.device, dtype=torch.float
            # )
            # context = 0.5 * torch.randint(
            #     -6, 6, (num_examples, 1), device=device, dtype=torch.float
            # )
            context = torch.tensor(
                np.random.choice([-2, 0, 2], (num_examples,)),
                device=self.device,
                dtype=self.ptdtype,
            )
            # context = 2.0 * torch.ones(
            #     (num_examples,1), device=device, dtype=torch.float
            # )
            # context = -2.0*torch.ones((num_examples,2),device=device,dtype=torch.float)
            # context, _ = torch.sort(context, 0)
            output_dict["context"]["logp"] = context

        if "energy" in context_col:
            context = 0.1 * torch.randint(
                -15, 15, (num_examples,), device=self.device, dtype=torch.float
            )
            # context = -2.0*torch.ones((num_examples,2),device=device,dtype=torch.float)
            context, _ = torch.sort(context, 0)
            output_dict["context"]["energy"] = context

        if "sascore" in context_col:
            # context = 0.5 * torch.randint(
            #     2, 20, (num_examples, ), device=self.device, dtype=torch.float
            # )
            context = torch.tensor(
                np.random.choice([2, 3, 4], (num_examples,)),
                device=self.device,
                dtype=torch.float,
            )
            # context = 0.5 * torch.randint(
            #     4, 8, (num_examples, 1), device=device, dtype=torch.float
            # )
            # context = 2.0*torch.ones((num_examples,1),device=device,dtype=torch.float)
            # context, _ = torch.sort(context, 0)
            output_dict["context"]["sascore"] = context

        if "mol_weight" in context_col:
            # context = 0.5 * torch.randint(
            #     2, 20, (num_examples,), device=self.device, dtype=torch.float
            # )
            context = torch.tensor(
                np.random.choice([2.0, 3.0, 4.0], (num_examples,)),
                device=self.device,
                dtype=torch.float,
            )

            # context = 0.5 * torch.randint(
            #     2, 20, (num_examples, 1), device=device, dtype=torch.float
            # )
            # context = 2.5*torch.ones((num_examples,1),device=device,dtype=torch.float)
            # context, _ = torch.sort(context, 0)
            output_dict["context"]["mol_weight"] = context

        return output_dict

    def _autocast(self):
        if "cuda" in self.device:
            if self.dtype == "bfloat16" and torch.cuda.is_bf16_supported():
                return torch.cuda.amp.autocast(dtype=torch.bfloat16)
            elif self.dtype == "float16":
                return torch.cuda.amp.autocast(dtype=torch.float16)
            else:
                return torch.cuda.amp.autocast(dtype=torch.float32)
        else:  # cpu
            return nullcontext()

    @torch.no_grad()
    def generate(
        self,
        context_cols: Union[List[str], None, Dict[str, torch.Tensor]] = None,
        context_smi: Union[str, None] = None,
        start_smiles: Union[str, None] = None,
        num_samples: int = 50,
        max_new_tokens: int = 256,
        temperature: float = 1.0,
        top_k: Union[int, None] = None,
        return_context: bool = False,
        total_gen_steps: int = 1,
        use_kv_cache: bool = False,
    ) -> Union[List[str], Tuple[List[str], List[float]]]:
        """
        Generates a list of SMILES. With the default options it would generate them unconditionally.
        Params:
            - context_cols : When a list the context is randomly sampled from the get_context method, when given a dictionary the
                             context values are taken from the dictionary instead.
            - context_smi : Further conditioning by the usage of a molecular fragment
            . start_smiles : Can be used to start the SMILES with a specific string, the model then generates the next tokens including that start sequence.
            - num_samples : Controlls how many SMILES in total will be generated be the model.
            - max_new_tokens : Controlls the maximum length of each SMILES (in tokens) that is generated.
            - temperature: Controlls the randomness of the model. A temperature = 1.0 means it is the trained distribution. A temperature < 1 is more deterministic and temperature > 1 is more random
            - top_k : Clamps the probability distribution to the top k tokens. From these the next token is then sampled from.
            - return_context : Whether the context that was given to the model should be returned.
            - total_gen_steps : In how many sub steps the generation should be split up to. Useful when generation 10k + SMILES and wanting to chunk these into for example 10 * 1k generations with total_gen_steps = 10.
            - use_kv_cache: Runs the generation using kv-caching. It is faster, but takes more memory.
        """

        with self.ctx:
            gens_per_step = num_samples // total_gen_steps

            logger.debug(f"Gens per Step: {gens_per_step}")
            context = None  # {"context": None, "fragment" : None}
            out_smiles = []
            with tqdm(total=total_gen_steps, desc="Batch") as pbar:
                for i in range(total_gen_steps):
                    if isinstance(context_cols, dict):
                        # TODO: Test if same length
                        cd = {
                            c: context_cols[c][
                                i * gens_per_step : (i + 1) * gens_per_step
                            ]
                            for c in context_cols.keys()
                        }

                        context_dict = {"context": cd, "fragment": None}
                        if context_smi is not None:
                            logger.debug(
                                f"context_smiles: {context_smi}",
                            )
                            # NOTE: Remove beginning [CLS] and end token [SEP]
                            incorporate_selfie = self.tokenizer.encode(context_smi)[
                                1:-1
                            ]

                            context_tensor = torch.tensor(
                                [incorporate_selfie] * gens_per_step,
                                dtype=torch.long,
                                device=self.device,
                            )

                            context_dict["fragment"] = context_tensor
                        context_cols = list(context_cols.keys())

                    else:
                        context_dict = self.get_context(
                            context_cols, context_smi, num_examples=gens_per_step
                        )

                    # for k in range(num_samples):
                    y = self.model.generate(
                        self.tokenizer,
                        context=context_dict["context"],
                        fragments=context_dict["fragment"],
                        start_smiles=start_smiles,
                        num_gen=gens_per_step,
                        temperature=temperature,
                        top_k=top_k,
                        max_length=max_new_tokens,
                        device=self.device,
                        cache_kv=use_kv_cache,
                    )

                    new_context = {k: [] for k in context_dict["context"]}
                    for i, sample in enumerate(y):
                        # print(sample)
                        mol = Chem.MolFromSmiles(sample)
                        if mol is not None:
                            out_smiles.append(sample)
                            for k in new_context:
                                new_context[k].append(
                                    context_dict["context"][k][i].unsqueeze(-1)
                                )

                    for k in new_context:
                        new_context[k] = torch.concat(new_context[k], dim=0)

                    if context is None:
                        context = new_context
                    else:
                        for k in context:
                            context[k] = torch.concat(
                                [context[k], new_context[k]], dim=0
                            )

                    pbar.update(1)

            logger.info(
                f"Number valid generated: {len(out_smiles) / num_samples * 100} %"
            )
            logger.info("---------------")

            if return_context:
                return (out_smiles, context)

            else:
                return out_smiles

    @torch.no_grad()
    def generate_with_evaluation(
        self,
        context_cols: Union[List[str], None] = None,
        context_smi: Union[str, None] = None,
        start_smiles: Union[str, None] = None,
        num_samples: int = 50,
        max_new_tokens: int = 256,
        temperature: float = 1.0,
        top_k: Union[int, None] = None,
        cmp_context_dict: Union[Dict[str, torch.Tensor], None] = None,
        total_gen_steps: int = 1,
        use_kv_cache: bool = False,
    ):
        out_smiles, new_context = self.generate(
            context_cols=context_cols,
            context_smi=context_smi,
            start_smiles=start_smiles,
            num_samples=num_samples,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_k=top_k,
            return_context=True,
            total_gen_steps=total_gen_steps,
            use_kv_cache=use_kv_cache,
        )

        out_dir = os.path.dirname(self.load_path)

        if context_cols is not None:
            if len(context_cols) == 1:
                plot_1D_condition(
                    context_cols,
                    os.path.join(out_dir, "plots"),
                    new_context,
                    out_smiles,
                    temperature,
                    cmp_context_dict,
                    context_scaler=None,
                )

            elif len(context_cols) == 2:
                plot_2D_condition(
                    context_cols,
                    os.path.join(out_dir, "plots"),
                    new_context,
                    out_smiles,
                    temperature,
                    label=context_smi,
                )

            elif len(context_cols) == 3:
                plot_3D_condition(
                    context_cols,
                    os.path.join(out_dir, "plots"),
                    new_context,
                    out_smiles,
                    temperature,
                )

            else:
                raise NotImplementedError(
                    "Currently not implemented for len(context_col) > 3"
                )

        else:
            # Unconditional Case
            plot_unconditional(
                out_path=os.path.join(out_dir, "plots"),
                smiles=out_smiles,
                temperature=temperature,
                cmp_context_dict=cmp_context_dict,
            )

        if context_smi is not None:
            pattern = r"\[\d+\*\]"
            # replace [14*] etc
            context_smi = re.sub(pattern, "", context_smi)

            context_mol = Chem.MolFromSmiles(context_smi)
            context_smarts = Chem.MolToSmarts(context_mol)

            pattern = r"(?<!\[)([:-=#])(?!\])(?![^\[]*?\])"

            context_smarts = re.sub(pattern, "~", context_smarts)
            logger.info(f"context_smarts {context_smarts}")
            out_mols = [Chem.MolFromSmiles(smi) for smi in out_smiles]

            context_fingerprint = FingerprintMols.FingerprintMol(context_mol)
            out_fingerprints = [FingerprintMols.FingerprintMol(fi) for fi in out_mols]
            all_sim = []
            all_sub = []
            for out_fing, out_mol in zip(out_fingerprints, out_mols):
                similarity = DataStructs.TanimotoSimilarity(
                    context_fingerprint, out_fing
                )

                has_sub = out_mol.HasSubstructMatch(Chem.MolFromSmarts(context_smarts))
                all_sub.append(has_sub)
                all_sim.append(similarity)

                # print(similarity,has_sub)
            logger.info(f"Mean sim {np.mean(all_sim)}")
            logger.info(
                f"Has Sub: {np.count_nonzero(all_sub)} or {round(np.count_nonzero(all_sub) / len(all_sub) * 100, 4)} %"
            )

        return out_smiles, new_context


if __name__ == "__main__":
    import argparse
    import rdkit.rdBase as rkrb
    import rdkit.RDLogger as rkl

    logger = rkl.logger()
    logger.setLevel(rkl.ERROR)
    rkrb.DisableLog("rdApp.error")

    torch.set_num_threads(8)
    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)

    parser = argparse.ArgumentParser(
        description="Generate SMILES strings using a trained model."
    )
    # parser.add_argument('--context_cols', type=str, nargs='+', default=None)
    parser.add_argument(
        "--context_cols",
        type=str,
        nargs="+",
        default=None,
        help="The given conditions are sampled from a fixed interval and given to the modeĺ.",
    )
    parser.add_argument(
        "--context_smi",
        type=str,
        default=None,
        help="This SMILES is given as context to the model and should be integrated in the generated molecules.",
    )
    parser.add_argument(
        "--start_smiles",
        type=str,
        default=None,
        help="This SMILES is placed at the front of each sample, from which on the generation continues.",
    )
    parser.add_argument(
        "--ckpt_path",
        type=str,
        default=os.path.join(os.path.dirname(__file__), "out", "llama2-M-Full-RSS.pt"),
        help="Which model should be used in the generation",
    )
    parser.add_argument(
        "--num_samples",
        type=int,
        default=50,
        help="Controls how many samples should be generated",
    )
    parser.add_argument(
        "--num_samples_per_step",
        type=int,
        default=1000,
        help="Works in conjunction with num_samples, by splitting the total into num_samples_per_step jobs. When num_samples > num_samples_per_step then it is split up into multiple seperate generation steps.",
    )

    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=256,
        help="Sets how many tokens should be generated from the model. We only trained with a max size of 256, but it is possible to generate longer molecules. However, these might be worse in quality.",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.8,
        help="Sets the randomness of the generation - A temperature of 0 would be deterministic and a temperature of > 1 is more random.",
    )
    parser.add_argument(
        "--top_k",
        type=int,
        default=None,
        help="The top_k of the sampling. Per default it is None, but can be set to an integer to have a more focused generation.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=1234,
        help="Random number generator seed, to make sampling consistent.",
    )
    parser.add_argument(
        "--cmp_dataset_path",
        type=str,
        default=None,
        help="A dataset in parquet or csv format to be used in the sample plots and to compute the metrics such as the novelty.",
    )
    device = "cuda" if torch.cuda.is_available() else "cpu"
    parser.add_argument(
        "--device",
        type=str,
        default=device,
        help="Change the device the model and generation is run on",
    )

    if "cuda" in device:
        # dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
        dtype = "float16" if torch.cuda.is_available() else "float32"
    else:
        dtype = "float32"

    parser.add_argument(
        "--dtype",
        type=str,
        default=dtype,
        help="Change the datatype of the computation. Per default it is float32 on CPU and float16 on GPU",
    )
    parser.add_argument(
        "--compile",
        type=bool,
        default=True,
        help="Use torch.compile to compile the model. Only works on torch>=2.0, but should make the inference faster.",
    )
    parser.add_argument(
        "--quantize",
        type=bool,
        default=False,
        help="(CURRENTLY NOT WORKING) Enable quantization to in8.",
    )
    parser.add_argument(
        "--kv_caching",
        action="store_true",
        default=False,
        help="Makes the attention mechanism linear, because the old keys and values are cached. The drawback is higher memory consumption.",
    )
    args = parser.parse_args()

    logger.info("Sampling with the following parameters:")
    logger.info(f"Checkpoint: {args.ckpt_path}")
    logger.info(f"Context columns: {args.context_cols}")
    logger.info(f"Context SMILES: {args.context_smi}")
    logger.info(f"Start SMILES: {args.start_smiles}")
    logger.info(f"Number of samples: {args.num_samples}")
    logger.info(f"Max new tokens: {args.max_new_tokens}")
    logger.info(f"Temperature: {args.temperature}")
    logger.info(f"Top k: {args.top_k}")
    logger.info(f"Seed: {args.seed}")
    logger.info(f"Device: {args.device}")
    logger.info(f"Data type: {args.dtype}")
    logger.info(f"Compile: {args.compile}")
    logger.info(f"Comparison dataset path: {args.cmp_dataset_path}")
    logger.info(f"Quantize: {args.quantize}")
    logger.info(f"Key Value Caching Enabled: {args.kv_caching}")

    sampler = Sampler(
        load_path=os.path.join(os.path.dirname(__file__), args.ckpt_path),
        device=args.device,
        seed=args.seed,
        dtype=args.dtype,
        compile=args.compile,
        quantize=args.quantize,
    )

    comp_context_dict = None
    comp_smiles = None
    if args.cmp_dataset_path is not None:
        df_comp = pd.read_parquet(args.cmp_dataset_path)
        df_comp = df_comp.sample(n=2_500_000)
        comp_context_dict = {
            c: df_comp[c].to_numpy() for c in ["logp", "sascore", "mol_weight"]
        }
        comp_smiles = df_comp["smiles"]

    measure_time = True
    start_time = time.time()
    smiles, context = sampler.generate_with_evaluation(
        context_cols=args.context_cols,
        context_smi=args.context_smi,
        start_smiles=args.start_smiles,
        num_samples=args.num_samples,
        max_new_tokens=args.max_new_tokens,
        temperature=args.temperature,
        top_k=args.top_k,
        cmp_context_dict=comp_context_dict,
        total_gen_steps=int(np.ceil(args.num_samples / args.num_samples_per_step)),
        use_kv_cache=args.kv_caching,
    )
    end_time = time.time()
    if measure_time:
        logger.info(f"Generation took: {end_time - start_time} sec")
    if comp_smiles is not None:
        res_metrics = check_metrics(smiles, comp_smiles)
        logger.info(f"Metrics: {res_metrics}")
    logger.info("Generated Molecules:")
    for s in smiles:
        print(s)