File size: 32,668 Bytes
55d9b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
from __future__ import annotations
import math
import pickle
import struct
import inspect
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, List, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm.auto import tqdm
from tokenizer import SmilesTokenizer
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
@dataclass
class ContextArgs:
context_keys: List[str] = field(default_factory=list)
context_dims: List[int] = field(default_factory=list)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.cache_hash = None
# use flash attention or a manual implementation?
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
if not self.flash:
print(
"WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0"
)
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask)
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, "mask")
scores = (
scores + self.mask[:, :, :seqlen, :seqlen]
) # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
def forward_with_kvcache(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
cache_id: int = 1,
):
bsz, seqlen, _ = x.shape
original_x = x
use_cache = self.cache_hash == cache_id
if use_cache:
x = x[:, -1, :].unsqueeze(1) # only need the last new token
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
if use_cache:
# comp_xq, comp_xk, comp_xv = self.wq(original_x), self.wk(original_x), self.wv(original_x)
# comp_xq = comp_xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
# comp_xk = comp_xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# comp_xv = comp_xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# # RoPE relative positional embeddings
# comp_xq, comp_xk = apply_rotary_emb(comp_xq, comp_xk, freqs_cos, freqs_sin)
self.k_cache = torch.concat([self.k_cache, xk.clone()], dim=1)
self.v_cache = torch.concat([self.v_cache, xv.clone()], dim=1)
# print("Before positional xk:", torch.all(self.k_cache == self.wk(original_x)))
# print("Before positional xv:", torch.all(self.v_cache == self.wv(original_x)))
seqlen = self.k_cache.size(1)
xk = self.k_cache
xv = self.v_cache
self.cache_hash = cache_id
xq = xq.view(bsz, 1, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
# xq, xk = apply_rotary_emb(xq, xk[:,-1,:,:].unsqueeze(1), freqs_cos[-1,:].unsqueeze(0), freqs_sin[-1,:].unsqueeze(0))
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
q_freq_cos = freqs_cos[-1, :].unsqueeze(0)
q_freq_sin = freqs_sin[-1, :].unsqueeze(0)
freqs_cos_q = reshape_for_broadcast(q_freq_cos, xq_r)
freqs_sin_q = reshape_for_broadcast(q_freq_sin, xq_r)
freqs_cos_k = reshape_for_broadcast(freqs_cos, xk_r)
freqs_sin_k = reshape_for_broadcast(freqs_sin, xk_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos_q - xq_i * freqs_sin_q
xq_out_i = xq_r * freqs_sin_q + xq_i * freqs_cos_q
xk_out_r = xk_r * freqs_cos_k - xk_i * freqs_sin_k
xk_out_i = xk_r * freqs_sin_k + xk_i * freqs_cos_k
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
xq, xk = xq_out.type_as(xq), xk_out.type_as(xk)
# print(f"Seq len {xk.shape[1]} xq:", torch.allclose(xq , comp_xq[:,-1,:].unsqueeze(1), atol=1e-7), torch.mean(xq - comp_xq[:,-1,:].unsqueeze(1)))
# print(f"Seq len {xk.shape[1]} xk:", torch.allclose(xk ,comp_xk, atol=1e-7), torch.mean(xk - comp_xk))
# print(f"Seq len {xk.shape[1]} xv:", torch.allclose(xv , comp_xv, atol=1e-7), torch.mean(xv - comp_xv))
# print("-"*10)
# self.old_x = original_x
else:
self.k_cache = xk
self.v_cache = xv
self.old_x = x
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
self.cache_hash = cache_id
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
# NOTE: VERY IMPORTANT to set is_causal=False, OTHERWISE the KV-Caching just breaks
is_causal=False,
)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, "mask")
scores = (
scores + self.mask[:, :, :seqlen, :seqlen]
) # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
# if use_cache:
# # original_x[:,-1,:] = output.transpose(1, 2).contiguous().view(bsz,-1)
# # output = original_x
# output = torch.concat( [self.out_cache, output.transpose(1, 2).view(bsz,1,-1)], dim=1).contiguous()
# self.out_cache = output
# else:
# output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# self.out_cache = output
# NOTE: only work when fed in one token at a time (e.g. seq = 1)
output = output.transpose(1, 2).contiguous().view(bsz, x.size(1), -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin):
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
def forward_with_kvcache(self, x, freqs_cos, freqs_sin, cache_id=1):
h = x + self.attention.forward_with_kvcache(
self.attention_norm(x), freqs_cos, freqs_sin, cache_id=cache_id
)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
last_loss: Optional[torch.Tensor]
def __init__(self, params: ModelArgs, context_params: ContextArgs):
super().__init__()
self.params = params
self.context_params = context_params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.frag_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.frag_type_embedding = nn.Embedding(1, params.dim)
self.context_lookup = {k: i for i, k in enumerate(context_params.context_keys)}
self.conditions_type_embeddings = nn.Embedding(
len(context_params.context_keys), params.dim
)
self.conditions_embeddings_lookup = nn.ModuleDict(
{
k: nn.Sequential(
nn.Linear(dim, params.dim, bias=True),
)
for k, dim in zip(
context_params.context_keys, context_params.context_dims
)
}
)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = (
self.output.weight
) # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len
)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("w3.weight") or pn.endswith("wo.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers)
)
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self,
tokens: torch.Tensor,
targets: Optional[torch.Tensor] = None,
context: Optional[Dict[str, torch.Tensor]] = None,
fragment: Optional[torch.Tensor] = None,
) -> torch.Tensor:
bsz, seqlen = tokens.shape
device = tokens.device
h = self._add_context_to_seq(tokens, context, fragment, bsz, device)
context_seq_len = h.shape[1] - seqlen
bsz, seqlen, _ = h.shape
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
h = h[:, context_seq_len:]
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
tmp_last_loss = F.cross_entropy(
logits.reshape(-1, logits.size(-1)),
targets.reshape(-1),
ignore_index=0, # Ignore Pad Tokens
)
# NOTE: This essentially does nothing for the computation,
# because we are multiplying the weights by zero.
# This *needs* to be done, so that we can train with DDP
# As due to the random training process some of the weights are not used in the forward pass
# That is unacceptable for the for the c10 backend and the training errors out.
# Maybe there is a better fix in the future, see:
# https://github.com/pytorch/pytorch/issues/43259
ddp_fix = sum(p.sum() for p in self.parameters())
zero_sum = ddp_fix * 0.0
self.last_loss = tmp_last_loss + zero_sum
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def forward_with_kvcache(
self,
tokens: torch.Tensor,
targets: Optional[torch.Tensor] = None,
context: Optional[Dict[str, torch.Tensor]] = None,
fragment: Optional[torch.Tensor] = None,
cache_id: int = 1,
pos_seq_len: Optional[int] = None,
) -> torch.Tensor:
bsz, seqlen = tokens.shape
device = tokens.device
h = self._add_context_to_seq(tokens, context, fragment, bsz, device)
context_seq_len = h.shape[1] - seqlen
bsz, seqlen, _ = h.shape
if pos_seq_len is None:
pos_seq_len = seqlen
else:
pos_seq_len = max(seqlen, pos_seq_len + context_seq_len)
freqs_cos = self.freqs_cos[:pos_seq_len]
freqs_sin = self.freqs_sin[:pos_seq_len]
for layer in self.layers:
h = layer.forward_with_kvcache(h, freqs_cos, freqs_sin, cache_id=cache_id)
h = self.norm(h)
h = h[:, context_seq_len:]
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
tmp_last_loss = F.cross_entropy(
logits.reshape(-1, logits.size(-1)),
targets.reshape(-1),
ignore_index=0, # Ignore Pad Tokens
)
# NOTE: This essentially does nothing for the computation,
# because we are multiplying the weights by zero.
# This *needs* to be done, so that we can train with DDP
# As due to the random training process some of the weights are not used in the forward pass
# That is unacceptable for the for the c10 backend and the training errors out.
# Maybe there is a better fix in the future, see:
# https://github.com/pytorch/pytorch/issues/43259
ddp_fix = sum(p.sum() for p in self.parameters())
zero_sum = ddp_fix * 0.0
self.last_loss = tmp_last_loss + zero_sum
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def _add_context_to_seq(self, tokens, context, fragment, bsz, device):
h = self.tok_embeddings(tokens)
h = self.dropout(h)
if fragment is not None:
fragment_type_enc = torch.zeros_like(
fragment, dtype=torch.long, device=device
)
h = torch.concat(
(
self.tok_embeddings(fragment)
+ self.frag_embeddings(fragment)
+ self.frag_type_embedding(fragment_type_enc),
h,
),
dim=1,
)
if context is not None and len(context) != 0:
# context is a dictionary with key : context_tensor of shape (batch_size, context_dim)
type_ids = []
context_vals = []
for emb_key, context_val in context.items():
emb_context_val = self.conditions_embeddings_lookup[emb_key](
context_val.unsqueeze(1).to(device)
).unsqueeze(1)
context_vals.append(emb_context_val)
type_ids_tensor = torch.tensor(
[self.context_lookup[emb_key]], device=device, dtype=torch.long
)
type_ids.append(type_ids_tensor)
context_types = (
torch.concat(type_ids, dim=0).reshape(-1, 1).expand(-1, bsz).T
)
# shape(len(context),batch_size, emb_size)
context_types = self.conditions_type_embeddings(context_types)
context_vals = torch.concat(context_vals, dim=1).to(device)
# SHAPE
h = torch.concat([context_vals + context_types, h], dim=1)
return h
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
# Create AdamW optimizer and use the fused version if it is available
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas, **extra_args
)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
"""estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS"""
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = sum(p.numel() for p in self.parameters())
cfg = self.params
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim // cfg.n_heads, cfg.max_seq_len
flops_per_token = 6 * N + 12 * L * H * Q * T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0 / dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.inference_mode()
def generate(
self,
tokenizer: SmilesTokenizer,
context: Union[torch.Tensor, None] = None,
fragments: Union[torch.Tensor, None] = None,
max_length: int = 50,
num_gen: int = 200,
start_smiles: Union[str, None] = None,
temperature: float = 1.0,
top_k: Union[int, None] = None,
device: torch.device = torch.device("cpu"),
cache_kv: bool = False,
) -> List[str]:
batch_size = num_gen
if start_smiles is not None:
tokenized_start_selfie = tokenizer.encode(start_smiles)[
:-1
] # remove <eos> token
tokenized_start_selfie = torch.tensor(
tokenized_start_selfie, device=device, dtype=torch.long
).view(-1, 1)
tokenized_start_selfie = tokenized_start_selfie.repeat(1, batch_size)
outputs = tokenized_start_selfie.T
else:
outputs = (
torch.LongTensor([[tokenizer.cls_token_id] * batch_size]).to(device)
).T # batch_size
self.eval()
start_len = outputs.shape[1]
has_end_idx = np.array([0] * batch_size)
cache_id = np.random.randint(0, int(1e10), 1).item()
with torch.no_grad():
with tqdm(total=max_length, desc="Generation") as pbar:
for i in range(start_len, max_length):
# trg_tensor = #torch.LongTensor(outputs).to(model.device)
if not cache_kv:
logits = self(outputs, context=context, fragment=fragments)
else:
# logits_ = self(outputs, context=context, fragment=fragments)
if i == start_len:
# When starting pass the whole input, so that "start_smiles" works, then only the newly generated token, because of the cache
func_input = outputs
else:
func_input = outputs[:, -1].unsqueeze(-1)
logits = self.forward_with_kvcache(
func_input,
context=context,
fragment=fragments,
cache_id=cache_id,
pos_seq_len=outputs.size(-1),
)
# raise NotImplementedError("Currently not working / right implemented")
# logits = self.forward_with_kvcache(outputs, context=context, fragment=fragments,cache_id = cache_id)
logits = logits[:, -1, :] # crop to just the final time step
if temperature == 0.0:
# "sample" the single most likely index
_, logits = torch.topk(logits, k=1, dim=-1)
else:
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
ended_sentences = idx_next == tokenizer.sep_token_id
if torch.count_nonzero(ended_sentences) != 0:
indicies = torch.nonzero(ended_sentences)
indicies = indicies.cpu().numpy()
for end_idx in indicies[:, 0]:
if has_end_idx[end_idx] == 0:
has_end_idx[end_idx] = i
# print(has_end_idx)
if all([idx != 0 for idx in has_end_idx]):
break
# outputs.append(best_guesses)
# outputs = torch.row_stack((outputs, idx_next))
outputs = torch.cat((outputs, idx_next), dim=1)
pbar.update(1)
out_selfies = []
for output, end_idx in zip(outputs.cpu().numpy(), has_end_idx):
# Incase of limiting the max_len
if end_idx == 0:
selfie = [tokenizer._convert_id_to_token(idx) for idx in output[:]]
else:
selfie = [
tokenizer._convert_id_to_token(idx) for idx in output[:end_idx]
]
selfie = "".join(selfie[1:])
out_selfies.append(selfie)
# for indicies in outputs:
# translated_sentence = [tokenizer.idx_to_tokens[idx] for idx in outputs]
# remove start token
return out_selfies
@staticmethod
def load(path, device: torch.device = torch.device("cpu")) -> Transformer:
data = torch.load(path, map_location=device)
newinstace = Transformer(data["model_params"], data["context_params"])
newinstace.load_state_dict(data["state_dict"])
return newinstace.to(device)
def save(self, filepath):
torch.save(
{
"state_dict": self.state_dict(),
**dict(model_params=self.params, context_params=self.context_params),
},
filepath,
)
def getNumberTrainableParams(self) -> int:
return sum(p.numel() for p in self.parameters() if p.requires_grad)
def getNumberParams(self) -> int:
return sum(p.numel() for p in self.parameters())
if __name__ == "__main__":
m = Transformer(
ModelArgs(dim=128, n_layers=8, n_heads=8, vocab_size=512, max_seq_len=1024),
context_params=ContextArgs(
context_keys=["logp", "sascore", "mol_weight"], context_dims=[1, 1, 1]
),
)
seq = torch.ones((128, 50), dtype=torch.long)
frag = torch.ones((128, 10), dtype=torch.long)
context = {
"logp": torch.ones((128,), dtype=torch.float32),
# "sascore": torch.ones((128,), dtype=torch.float32),
"mol_weight": torch.ones((128,), dtype=torch.float32),
}
print(m.forward(seq, targets=seq, context=context, fragment=frag))
|