--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: patentClassfication2 results: [] --- # patentClassfication2 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Accuracy: 0.6746 - F1: 0.6765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.54241e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 24 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.6169 | 1.0 | 4438 | 0.6919 | 0.6121 | 0.6906 | | 0.5475 | 2.0 | 8876 | 0.6121 | 0.6746 | 0.6765 | | 0.4521 | 3.0 | 13314 | 0.7167 | 0.6706 | 0.6827 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3