File size: 4,160 Bytes
23baba2 be44629 23baba2 fec4831 23baba2 be44629 fec4831 23baba2 fec4831 23baba2 fec4831 e2da00f fec4831 23baba2 68b541a 23baba2 fec4831 fb2f9b1 fec4831 23baba2 fec4831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
base_model: meta-llama/Llama-2-7b-hf-adapter
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Llama-2-7b-hf-IDMGSP
results: []
license: mit
datasets:
- tum-nlp/IDMGSP
language:
- da
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-IDMGSP
This model is a LoRA adapter of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [tum-nlp/IDMGSP](https://huggingface.co/datasets/tum-nlp/IDMGSP) dataset.
It achieves the following results on the evaluation split:
- Loss: 0.1450
- Accuracy: {'accuracy': 0.9759036144578314}
- F1: {'f1': 0.9758125472411187}
## Model description
Model loaded fine-tuned in 4bit quantization mode using LoRA.
## Intended uses & limitations
Labels: `0` non-AI generated, `1` AI generated.
For classifying AI generated text. Code to run the inference
```python
import transformers
import torch
import datasets
import numpy as np
import torch
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel, AutoPeftModelForCausalLM, TaskType
import bitsandbytes as bnb
class Model():
def __init__(self, name) -> None:
# Tokenizer
self.tokenizer = transformers.LlamaTokenizer.from_pretrained(self.name)
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"Tokenizer: {self.tokenizer.eos_token}; Pad {self.tokenizer.pad_token}")
# Model
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype = "bfloat16",
)
self.peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS, r=8, lora_alpha=16, lora_dropout=0.05, bias="none"
)
self.model = transformers.LlamaForSequenceClassification.from_pretrained(self.name,
num_labels=2,
quantization_config = bnb_config,
device_map = "auto"
)
self.model.config.pad_token_id = self.model.config.eos_token_id
def predict(self, text):
inputs = self.tokenize(text)
outputs = self.model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
return id2label[predictions.item()]
```
## Training and evaluation data
[tum-nlp/IDMGSP](https://huggingface.co/datasets/tum-nlp/IDMGSP) dataset, `classifier_input` subsplit.
## Training procedure
### Training hyperparameters
BitsAndBytes and LoRA config parameters:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/638f0f9ab0525fa370479467/XI1imFyXmzFjCGCkBYClc.png)
GPU VRAM Consumption during fine-tuning: 30.6gb
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|
| 0.0766 | 1.0 | 498 | 0.1165 | {'accuracy': 0.9614708835341366} | {'f1': 0.9612813721780804} |
| 0.182 | 2.0 | 996 | 0.0934 | {'accuracy': 0.9657379518072289} | {'f1': 0.9648059816939539} |
| 0.037 | 3.0 | 1494 | 0.1190 | {'accuracy': 0.9716365461847389} | {'f1': 0.9710182097973841} |
| 0.0349 | 4.0 | 1992 | 0.1884 | {'accuracy': 0.96875} | {'f1': 0.9692326702088224} |
| 0.0046 | 5.0 | 2490 | 0.1450 | {'accuracy': 0.9759036144578314} | {'f1': 0.9758125472411187} |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1 |