|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning NVIDIA RNN-T models for speech recognition. |
|
""" |
|
|
|
import copy |
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
|
|
import wandb |
|
from torch.utils.data import Dataset |
|
from tqdm import tqdm |
|
import json |
|
from typing import Optional, Dict, Union, List, Any |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from omegaconf import OmegaConf |
|
from models import RNNTBPEModel |
|
|
|
import datasets |
|
from datasets import DatasetDict, load_dataset, load_metric |
|
import transformers |
|
from transformers import ( |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
set_seed, |
|
Trainer, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
from process_asr_text_tokenizer import __process_data as nemo_process_data, \ |
|
__build_document_from_manifests as nemo_build_document_from_manifests |
|
|
|
|
|
|
|
check_min_version("4.17.0.dev0") |
|
|
|
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
config_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}, |
|
) |
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to pretrained model or model identifier from NVIDIA NeMo NGC."} |
|
) |
|
pretrained_model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to local pretrained model or model identifier."} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co or NVIDIA NeMo NGC."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " |
|
"with private models)." |
|
}, |
|
) |
|
manifest_path: str = field( |
|
default="data", |
|
metadata={ |
|
"help": "Manifest path." |
|
}, |
|
) |
|
tokenizer_path: str = field( |
|
default="tokenizers", |
|
metadata={ |
|
"help": "Tokenizer path." |
|
}, |
|
) |
|
vocab_size: int = field( |
|
default=1024, |
|
metadata={"help": "Tokenizer vocab size."} |
|
) |
|
tokenizer_type: str = field( |
|
default="spe", |
|
metadata={ |
|
"help": "Can be either spe or wpe. spe refers to the Google sentencepiece library tokenizer." |
|
"wpe refers to the HuggingFace BERT Word Piece tokenizer." |
|
}, |
|
) |
|
spe_type: str = field( |
|
default="bpe", |
|
metadata={ |
|
"help": "Type of the SentencePiece model. Can be `bpe`, `unigram`, `char` or `word`." |
|
"Used only if `tokenizer_type` == `spe`" |
|
}, |
|
) |
|
cutoff_freq: str = field( |
|
default=0.001, |
|
metadata={"help": "Drop the least frequent chars from the train set when building the tokenizer."} |
|
) |
|
fuse_loss_wer: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to fuse the computation of prediction net + joint net + loss + WER calculation to be run " |
|
"on sub-batches of size `fused_batch_size`" |
|
} |
|
) |
|
fused_batch_size: int = field( |
|
default=8, |
|
metadata={ |
|
"help": "`fused_batch_size` is the actual batch size of the prediction net, joint net and transducer loss." |
|
"Using small values here will preserve a lot of memory during training, but will make training slower as well." |
|
"An optimal ratio of fused_batch_size : per_device_train_batch_size is 1:1." |
|
"However, to preserve memory, this ratio can be 1:8 or even 1:16." |
|
} |
|
) |
|
final_decoding_strategy: str = field( |
|
default="greedy_batch", |
|
metadata={ |
|
"help": "Decoding strategy for final eval/prediction steps. One of: [`greedy`, `greedy_batch`, `beam`, " |
|
"`tsd`, `alsd`]." |
|
} |
|
) |
|
final_num_beams: int = field( |
|
default=1, |
|
metadata={ |
|
"help": "Number of beams for final eval/prediction steps. Increase beam size for better scores, " |
|
"but it will take much longer for transcription!" |
|
} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
text_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of test examples to this " |
|
"value if set." |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default="text", |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=20.0, |
|
metadata={ |
|
"help": "Truncate training audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" |
|
}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} |
|
) |
|
max_eval_duration_in_seconds: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Truncate eval/test audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" |
|
}, |
|
) |
|
max_target_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": "The maximum total sequence length for target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
}, |
|
) |
|
min_target_length: Optional[int] = field( |
|
default=2, |
|
metadata={ |
|
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter " |
|
"than this will be filtered." |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to only do data preprocessing and skip training. " |
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. " |
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " |
|
"so that the cached datasets can consequently be loaded in distributed training" |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" |
|
}, |
|
) |
|
test_split_name: str = field( |
|
default="test", |
|
metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"}, |
|
) |
|
do_lower_case: bool = field( |
|
default=True, |
|
metadata={"help": "Whether the target text should be lower cased."}, |
|
) |
|
wandb_project: str = field( |
|
default="speech-recognition-rnnt", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
|
|
|
|
def write_wandb_pred(pred_str, label_str, prefix="eval"): |
|
|
|
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb.log( |
|
{ |
|
f"{prefix}/predictions": wandb.Table( |
|
columns=["label_str", "pred_str"], data=str_data |
|
) |
|
}, |
|
) |
|
|
|
|
|
def build_tokenizer(model_args, data_args, manifests): |
|
""" |
|
Function to build a NeMo tokenizer from manifest file(s). |
|
Copied from https://github.com/NVIDIA/NeMo/blob/66c7677cd4a68d78965d4905dd1febbf5385dff3/scripts/tokenizers/process_asr_text_tokenizer.py#L268 |
|
""" |
|
data_root = model_args.tokenizer_path |
|
if isinstance(manifests, list): |
|
joint_manifests = ",".join(manifests) |
|
else: |
|
joint_manifests = manifests |
|
vocab_size = model_args.vocab_size |
|
tokenizer = model_args.tokenizer_type |
|
spe_type = model_args.spe_type |
|
if not 0 <= model_args.cutoff_freq < 1: |
|
raise ValueError(f"`cutoff_freq` must be between zero and one, got {model_args.cutoff_freq}") |
|
spe_character_coverage = 1 - model_args.cutoff_freq |
|
|
|
logger.info("Building tokenizer...") |
|
if not os.path.exists(data_root): |
|
os.makedirs(data_root) |
|
|
|
text_corpus_path = nemo_build_document_from_manifests(data_root, joint_manifests) |
|
|
|
tokenizer_path = nemo_process_data( |
|
text_corpus_path, |
|
data_root, |
|
vocab_size, |
|
tokenizer, |
|
spe_type, |
|
lower_case=data_args.do_lower_case, |
|
spe_character_coverage=spe_character_coverage, |
|
spe_sample_size=-1, |
|
spe_train_extremely_large_corpus=False, |
|
spe_max_sentencepiece_length=-1, |
|
spe_bos=False, |
|
spe_eos=False, |
|
spe_pad=False, |
|
) |
|
|
|
print("Serialized tokenizer at location :", tokenizer_path) |
|
logger.info('Done!') |
|
|
|
|
|
if tokenizer == 'spe': |
|
tokenizer_dir = os.path.join(data_root, f"tokenizer_spe_{spe_type}_v{vocab_size}") |
|
tokenizer_type_cfg = "bpe" |
|
else: |
|
tokenizer_dir = os.path.join(data_root, f"tokenizer_wpe_v{vocab_size}") |
|
tokenizer_type_cfg = "wpe" |
|
|
|
return tokenizer_dir, tokenizer_type_cfg |
|
|
|
|
|
def NeMoDataCollator(features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Since NeMo models don't have a HF processor defined (feature extractor + tokenizer), we'll pad by hand... |
|
The padding idx is arbitrary: we provide the model with the input lengths and label lengths, from which |
|
all the relevant padding information is inferred. Thus, we'll use the default np.pad padding idx (0). |
|
""" |
|
|
|
|
|
input_ids = [feature["input_ids"] for feature in features] |
|
labels = [feature["labels"] for feature in features] |
|
|
|
|
|
input_lengths = [feature["input_lengths"] for feature in features] |
|
max_input_len = max(input_lengths) |
|
input_ids = [np.pad(input_val, (0, max_input_len - input_len), 'constant') for input_val, input_len in |
|
zip(input_ids, input_lengths)] |
|
|
|
|
|
label_lengths = [len(lab) for lab in labels] |
|
max_label_len = max(label_lengths) |
|
labels = [np.pad(lab, (0, max_label_len - lab_len), 'constant') for lab, lab_len in zip(labels, label_lengths)] |
|
|
|
batch = {"input_lengths": input_lengths, "labels": labels, "label_lengths": label_lengths} |
|
|
|
|
|
batch = {k: torch.tensor(np.array(v), requires_grad=False) for k, v in batch.items()} |
|
|
|
|
|
batch["input_ids"] = torch.tensor(np.array(input_ids, dtype=np.float32), requires_grad=False) |
|
|
|
return batch |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
os.environ["WANDB_PROJECT"] = data_args.wandb_project |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
config = OmegaConf.load(model_args.config_path).model |
|
|
|
|
|
raw_datasets = DatasetDict() |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if training_args.do_eval: |
|
raw_datasets["eval"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if training_args.do_predict: |
|
test_split = data_args.test_split_name.split("+") |
|
for split in test_split: |
|
raw_datasets[split] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=split, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict: |
|
raise ValueError( |
|
"Cannot not train, not do evaluation and not do prediction. At least one of " |
|
"training, evaluation or prediction has to be done." |
|
) |
|
|
|
|
|
if not training_args.do_train: |
|
training_args.num_train_epochs = 1 |
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--audio_column_name` to the correct audio column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--text_column_name` to the correct text column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=config.sample_rate) |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * config.sample_rate) |
|
min_input_length = max(int(data_args.min_duration_in_seconds * config.sample_rate), 1) |
|
max_eval_input_length = int(data_args.max_eval_duration_in_seconds * config.sample_rate) if data_args.max_eval_duration_in_seconds else None |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
text_column_name = data_args.text_column_name |
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) |
|
|
|
if training_args.do_predict and data_args.max_predict_samples is not None: |
|
for split in test_split: |
|
raw_datasets[split] = raw_datasets[split].select(range(data_args.max_predict_samples)) |
|
|
|
|
|
|
|
def build_manifest(ds, manifest_path): |
|
with open(manifest_path, 'w') as fout: |
|
for sample in tqdm(ds[text_column_name]): |
|
|
|
metadata = { |
|
"text": sample |
|
} |
|
json.dump(metadata, fout) |
|
fout.write('\n') |
|
|
|
config.train_ds = config.validation_ds = config.test_ds = None |
|
|
|
if not os.path.exists(model_args.manifest_path) and training_args.do_train: |
|
os.makedirs(model_args.manifest_path) |
|
manifest = os.path.join(model_args.manifest_path, "train.json") |
|
logger.info(f"Building training manifest at {manifest}") |
|
build_manifest(raw_datasets["train"], manifest) |
|
else: |
|
manifest = os.path.join(model_args.manifest_path, "train.json") |
|
logger.info(f"Re-using training manifest at {manifest}") |
|
|
|
tokenizer_dir, tokenizer_type_cfg = build_tokenizer(model_args, data_args, manifest) |
|
|
|
|
|
config.tokenizer.dir = tokenizer_dir |
|
config.tokenizer.type = tokenizer_type_cfg |
|
|
|
|
|
config.joint.fuse_loss_wer = model_args.fuse_loss_wer |
|
if model_args.fuse_loss_wer: |
|
config.joint.fused_batch_size = model_args.fused_batch_size |
|
|
|
if model_args.model_name_or_path is not None: |
|
|
|
model = RNNTBPEModel.from_pretrained(model_args.model_name_or_path, override_config_path=config, |
|
map_location="cpu") |
|
model.save_name = model_args.model_name_or_path |
|
|
|
pretrained_decoder = model.decoder.state_dict() |
|
pretrained_joint = model.joint.state_dict() |
|
model.change_vocabulary(new_tokenizer_dir=tokenizer_dir, new_tokenizer_type=tokenizer_type_cfg) |
|
|
|
|
|
model.decoder.load_state_dict(pretrained_decoder) |
|
model.joint.load_state_dict(pretrained_joint) |
|
|
|
elif model_args.pretrained_model_name_or_path is not None: |
|
model = RNNTBPEModel.restore_from(model_args.pretrained_model_name_or_path, override_config_path=config, |
|
map_location="cpu") |
|
model.save_name = model_args.config_path.split("/")[-1].split(".")[0] |
|
|
|
else: |
|
model = RNNTBPEModel(cfg=config) |
|
model.save_name = model_args.config_path.split("/")[-1].split(".")[0] |
|
model.change_vocabulary(new_tokenizer_dir=tokenizer_dir, new_tokenizer_type=tokenizer_type_cfg) |
|
|
|
|
|
tokenizer = model.tokenizer.tokenizer.encode_as_ids |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
|
|
|
|
|
|
batch["input_ids"] = sample["array"] |
|
batch["input_lengths"] = len(sample["array"]) |
|
|
|
batch["labels"] = tokenizer(batch[text_column_name]) |
|
return batch |
|
|
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=next(iter(raw_datasets.values())).column_names, |
|
num_proc=num_workers, |
|
desc="preprocess train dataset", |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
vectorized_datasets = vectorized_datasets.filter( |
|
is_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_lengths"], |
|
) |
|
|
|
if max_eval_input_length is not None: |
|
|
|
def is_eval_audio_in_length_range(length): |
|
return min_input_length < length < max_eval_input_length |
|
|
|
vectorized_datasets = vectorized_datasets.filter( |
|
is_eval_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_lengths"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
def compute_metrics(pred): |
|
|
|
wer_num = pred.predictions[1] |
|
wer_denom = pred.predictions[2] |
|
|
|
wer = sum(wer_num) / sum(wer_denom) |
|
return {"wer": wer} |
|
|
|
|
|
class NeMoTrainer(Trainer): |
|
def _save(self, output_dir: Optional[str] = None, state_dict=None): |
|
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir |
|
os.makedirs(output_dir, exist_ok=True) |
|
logger.info(f"Saving model checkpoint to {output_dir}") |
|
|
|
|
|
self.model.save_to(save_path=os.path.join(output_dir, model.save_name + ".nemo")) |
|
|
|
torch.save(self.args, os.path.join(output_dir, "training_args.bin")) |
|
|
|
def transcribe(self, test_dataset: Dataset) -> List[Any]: |
|
self.model.eval() |
|
test_dataloader = self.get_test_dataloader(test_dataset) |
|
hypotheses = [] |
|
for test_batch in tqdm(test_dataloader, desc="Transcribing"): |
|
inputs = self._prepare_inputs(test_batch) |
|
best_hyp, all_hyp = self.model.transcribe(**inputs) |
|
hypotheses += best_hyp |
|
del test_batch |
|
return hypotheses |
|
|
|
|
|
|
|
trainer = NeMoTrainer( |
|
model=model, |
|
args=training_args, |
|
compute_metrics=compute_metrics, |
|
train_dataset=vectorized_datasets['train'] if training_args.do_train else None, |
|
eval_dataset=vectorized_datasets['eval'] if training_args.do_eval else None, |
|
data_collator=NeMoDataCollator, |
|
) |
|
|
|
|
|
|
|
|
|
if training_args.do_train: |
|
|
|
|
|
if last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path): |
|
checkpoint = model_args.model_name_or_path |
|
else: |
|
checkpoint = None |
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples |
|
if data_args.max_train_samples is not None |
|
else len(vectorized_datasets["train"]) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval or training_args.do_predict: |
|
|
|
beam_decoding_config = copy.deepcopy(trainer.model.cfg.decoding) |
|
beam_decoding_config.strategy = model_args.final_decoding_strategy |
|
beam_decoding_config.beam.beam_size = model_args.final_num_beams |
|
|
|
trainer.model.change_decoding_strategy(beam_decoding_config) |
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info(f"*** Running Final Evaluation ({model_args.final_decoding_strategy}) ***") |
|
|
|
predictions = trainer.transcribe(vectorized_datasets["eval"]) |
|
targets = model.tokenizer.ids_to_text(vectorized_datasets["eval"]["labels"]) |
|
|
|
cer_metric = load_metric("cer") |
|
wer_metric = load_metric("wer") |
|
|
|
cer = cer_metric.compute(predictions=predictions, references=targets) |
|
wer = wer_metric.compute(predictions=predictions, references=targets) |
|
|
|
metrics = {f"eval_cer": cer, f"eval_wer": wer} |
|
|
|
max_eval_samples = ( |
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len( |
|
vectorized_datasets["eval"]) |
|
) |
|
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if "wandb" in training_args.report_to: |
|
if not training_args.do_train: |
|
wandb.init(name=training_args.run_name, project=data_args.wandb_project) |
|
metrics = {os.path.join("eval", k[len("eval") + 1:]): v for k, v in metrics.items()} |
|
|
|
wandb.log(metrics) |
|
write_wandb_pred(predictions, targets, prefix="eval") |
|
|
|
if training_args.do_predict: |
|
logger.info(f"*** Running Final Prediction ({model_args.final_decoding_strategy}) ***") |
|
|
|
for split in test_split: |
|
predictions = trainer.transcribe(vectorized_datasets[split]) |
|
targets = model.tokenizer.ids_to_text(vectorized_datasets[split]["labels"]) |
|
|
|
cer_metric = load_metric("cer") |
|
wer_metric = load_metric("wer") |
|
|
|
cer = cer_metric.compute(predictions=predictions, references=targets) |
|
wer = wer_metric.compute(predictions=predictions, references=targets) |
|
|
|
metrics = {f"{split}_cer": cer, f"{split}_wer": wer} |
|
|
|
max_predict_samples = ( |
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len( |
|
vectorized_datasets[split]) |
|
) |
|
metrics[f"{split}_samples"] = min(max_predict_samples, len(vectorized_datasets[split])) |
|
|
|
trainer.log_metrics(split, metrics) |
|
trainer.save_metrics(split, metrics) |
|
|
|
if "wandb" in training_args.report_to: |
|
if not training_args.do_train or training_args.do_eval: |
|
wandb.init(name=training_args.run_name, project=data_args.wandb_project) |
|
metrics = {os.path.join(split, k[len(split) + 1:]): v for k, v in metrics.items()} |
|
wandb.log(metrics) |
|
write_wandb_pred(predictions, targets, prefix=split) |
|
|
|
|
|
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na" |
|
kwargs = { |
|
"finetuned_from": model_args.model_name_or_path, |
|
"tasks": "speech-recognition", |
|
"tags": ["automatic-speech-recognition", data_args.dataset_name], |
|
"dataset_args": ( |
|
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" |
|
f" {data_args.eval_split_name}" |
|
), |
|
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", |
|
} |
|
if "common_voice" in data_args.dataset_name: |
|
kwargs["language"] = config_name |
|
|
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
|
|
|
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|