|
import torch |
|
import comfy.model_management |
|
import comfy.sample |
|
import latent_preview |
|
|
|
def prepare_mask(mask, shape): |
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") |
|
mask = mask.expand((-1,shape[1],-1,-1)) |
|
if mask.shape[0] < shape[0]: |
|
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] |
|
return mask |
|
def remap_range(value, minIn, MaxIn, minOut, maxOut): |
|
if value > MaxIn: value = MaxIn; |
|
if value < minIn: value = minIn; |
|
finalValue = ((value - minIn) / (MaxIn - minIn)) * (maxOut - minOut) + minOut; |
|
return finalValue; |
|
|
|
class KSamplerSDXLAdvanced: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
ui_widgets = {"required": |
|
{ |
|
"model_model": ("MODEL",), |
|
"model_refiner": ("MODEL",), |
|
"CONDITIONING_model_pos": ("CONDITIONING", ), |
|
"CONDITIONING_model_neg": ("CONDITIONING", ), |
|
"CONDITIONING_refiner_pos": ("CONDITIONING", ), |
|
"CONDITIONING_refiner_neg": ("CONDITIONING", ), |
|
"latent_image": ("LATENT", ), |
|
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"cfg_scale": ("FLOAT", {"default": 7.5, "min": 0.0, "max": 100.0}), |
|
|
|
|
|
"sampler": (comfy.samplers.KSampler.SAMPLERS, {"default": "dpmpp_2m"}), |
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"default": "karras"}), |
|
|
|
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), |
|
"base_steps": ("INT", {"default": 12, "min": 0, "max": 10000}), |
|
"refiner_steps": ("INT", {"default": 4, "min": 0, "max": 10000}), |
|
"detail_level": ("FLOAT", {"default": 1, "min": 0.0, "max": 2.0, "step": 0.1}), |
|
"detail_from": (["penultimate_step","base_sample"], {"default": "penultimate_step"}), |
|
"noise_source": (["CPU","GPU"], {"default": "CPU"}), |
|
"auto_rescale_tonemap": (["enable","disable"], {"default": "enable"}), |
|
"rescale_tonemap_to": ("FLOAT", {"default": 7.5, "min": 0, "max": 30.0, "step": 0.5}), |
|
|
|
|
|
|
|
}, |
|
"optional": |
|
{ |
|
"SD15VAE": ("VAE", ), |
|
"SDXLVAE": ("VAE", ), |
|
} |
|
} |
|
return ui_widgets |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "sample_sdxl" |
|
CATEGORY = "sampling" |
|
|
|
|
|
def patch_tonemap(self, model, multiplier): |
|
def sampler_tonemap_reinhard(args): |
|
cond = args["cond"] |
|
uncond = args["uncond"] |
|
cond_scale = args["cond_scale"] |
|
noise_pred = (cond - uncond) |
|
noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None] |
|
noise_pred /= noise_pred_vector_magnitude |
|
|
|
mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
top = (std * 3 + mean) * multiplier |
|
|
|
|
|
noise_pred_vector_magnitude *= (1.0 / top) |
|
new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0) |
|
new_magnitude *= top |
|
|
|
return uncond + noise_pred * new_magnitude * cond_scale |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(sampler_tonemap_reinhard) |
|
return m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def common_ksampler(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): |
|
device = comfy.model_management.get_torch_device() |
|
latent_image = latent["samples"] |
|
|
|
if disable_noise: |
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
|
else: |
|
batch_inds = latent["batch_index"] if "batch_index" in latent else None |
|
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) |
|
|
|
noise_mask = None |
|
if "noise_mask" in latent: |
|
noise_mask = latent["noise_mask"] |
|
|
|
preview_format = "JPEG" |
|
if preview_format not in ["JPEG", "PNG"]: |
|
preview_format = "JPEG" |
|
|
|
previewer = latent_preview.get_previewer(device, model.model.latent_format) |
|
|
|
pbar = comfy.utils.ProgressBar(steps) |
|
def callback(step, x0, x, total_steps): |
|
preview_bytes = None |
|
if previewer: |
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) |
|
pbar.update_absolute(step + 1, total_steps, preview_bytes) |
|
|
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, |
|
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, |
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed) |
|
out = latent.copy() |
|
out["samples"] = samples |
|
return out |
|
|
|
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0): |
|
force_full_denoise = True |
|
if return_with_leftover_noise == "enable": |
|
force_full_denoise = False |
|
disable_noise = False |
|
if add_noise == "disable": |
|
disable_noise = True |
|
return self.common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) |
|
|
|
def calc_sigma(self, model, sampler_name, scheduler, steps, start_at_step, end_at_step): |
|
device = comfy.model_management.get_torch_device() |
|
end_at_step = min(steps, end_at_step) |
|
start_at_step = min(start_at_step, end_at_step) |
|
real_model = None |
|
comfy.model_management.load_model_gpu(model) |
|
real_model = model.model |
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) |
|
sigmas = sampler.sigmas |
|
sigma = sigmas[start_at_step] - sigmas[end_at_step] |
|
sigma /= model.model.latent_format.scale_factor |
|
sigma_output = sigma.cpu().numpy() |
|
print("Calculated sigma:",sigma_output) |
|
return sigma_output |
|
|
|
def create_noisy_latents(self, source, seed, width, height, batch_size): |
|
torch.manual_seed(seed) |
|
if source == "CPU": |
|
device = "cpu" |
|
else: |
|
device = comfy.model_management.get_torch_device() |
|
noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu() |
|
return {"samples":noise} |
|
|
|
def inject_noise(self, latents, strength, noise=None, mask=None): |
|
s = latents.copy() |
|
if noise is None: |
|
return s |
|
if latents["samples"].shape != noise["samples"].shape: |
|
print("warning, shapes in InjectNoise not the same, ignoring") |
|
return s |
|
noised = s["samples"].clone() + noise["samples"].clone() * strength |
|
if mask is not None: |
|
mask = prepare_mask(mask, noised.shape) |
|
noised = mask * noised + (1-mask) * latents["samples"] |
|
s["samples"] = noised |
|
return s |
|
|
|
|
|
def slerp(self, val, low, high): |
|
dims = low.shape |
|
|
|
|
|
low = low.reshape(dims[0], -1) |
|
high = high.reshape(dims[0], -1) |
|
|
|
low_norm = low/torch.norm(low, dim=1, keepdim=True) |
|
high_norm = high/torch.norm(high, dim=1, keepdim=True) |
|
|
|
|
|
low_norm[low_norm != low_norm] = 0.0 |
|
high_norm[high_norm != high_norm] = 0.0 |
|
|
|
omega = torch.acos((low_norm*high_norm).sum(1)) |
|
so = torch.sin(omega) |
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high |
|
return res.reshape(dims) |
|
|
|
def slerp_latents(self, latents1, factor, latents2=None, mask=None): |
|
s = latents1.copy() |
|
if latents2 is None: |
|
return (s,) |
|
if latents1["samples"].shape != latents2["samples"].shape: |
|
print("warning, shapes in LatentSlerp not the same, ignoring") |
|
return (s,) |
|
slerped = self.slerp(factor, latents1["samples"].clone(), latents2["samples"].clone()) |
|
if mask is not None: |
|
mask = prepare_mask(mask, slerped.shape) |
|
slerped = mask * slerped + (1-mask) * latents1["samples"] |
|
s["samples"] = slerped |
|
return s |
|
|
|
def compute_and_generate_noise(self,samples,seed,width,height,batch_size,model,sampler,scheduler,total_steps,start_at,end_at,source): |
|
noisy_latent = self.create_noisy_latents(source,seed,width,height,batch_size) |
|
sigma_balls = self.calc_sigma(model,sampler,scheduler,total_steps,start_at,end_at) |
|
samples_output = self.inject_noise(samples,sigma_balls,noisy_latent) |
|
return samples_output |
|
|
|
def sample_sdxl(self, model_model, model_refiner, CONDITIONING_model_pos, CONDITIONING_model_neg, CONDITIONING_refiner_pos, CONDITIONING_refiner_neg, latent_image, seed, cfg_scale, sampler, scheduler, start_at_step, base_steps, refiner_steps,detail_level,detail_from,noise_source,auto_rescale_tonemap,rescale_tonemap_to,SD15VAE=None, SDXLVAE=None): |
|
|
|
|
|
|
|
|
|
if auto_rescale_tonemap == "enable" and cfg_scale!=rescale_tonemap_to: |
|
scale_model = 1/cfg_scale*rescale_tonemap_to |
|
model_model = self.patch_tonemap(model_model,scale_model) |
|
if sampler == "uni_pc" or sampler == "uni_pc_bh2": |
|
scale_model = 1/cfg_scale*7.5 |
|
model_refiner = self.patch_tonemap(model_refiner,scale_model) |
|
|
|
for lat in latent_image['samples']: |
|
d, y, x = lat.size() |
|
break |
|
|
|
batch_size = len(latent_image['samples']) |
|
width = x*8 |
|
height = y*8 |
|
|
|
base_start_at = start_at_step |
|
base_end_at = base_steps |
|
base_total_steps = base_steps + refiner_steps |
|
refiner_start_at = base_steps |
|
refiner_end_at = base_steps + refiner_steps |
|
refiner_total_steps = base_steps + refiner_steps |
|
|
|
if sampler == "uni_pc" or sampler == "uni_pc_bh2": |
|
noisy_base = self.compute_and_generate_noise(latent_image,seed,width,height,batch_size,model_model,sampler,scheduler,base_end_at-1,base_start_at,base_end_at-1,noise_source) |
|
else: |
|
noisy_base = self.compute_and_generate_noise(latent_image,seed,width,height,batch_size,model_model,sampler,scheduler,base_end_at,base_start_at,base_end_at,noise_source) |
|
sample_model = self.sample(model_model,"disable",seed,base_total_steps,cfg_scale,sampler,scheduler,CONDITIONING_model_pos,CONDITIONING_model_neg,noisy_base,base_start_at,base_end_at,"disable") |
|
|
|
if SD15VAE is not None and SDXLVAE is not None: |
|
sample_model["samples"] = SD15VAE.decode(sample_model["samples"]) |
|
sample_model["samples"] = SDXLVAE.encode(sample_model["samples"]) |
|
|
|
if sampler == "uni_pc" or sampler == "uni_pc_bh2": |
|
sampler = "dpmpp_2m" |
|
scheduler = "karras" |
|
|
|
if detail_level < 0.9999 or detail_level > 1: |
|
if detail_from == "penultimate_step": |
|
if detail_level > 1: |
|
noisy_latent_1 = self.compute_and_generate_noise(sample_model,seed,width,height,batch_size,model_refiner,sampler,scheduler,refiner_total_steps+1,refiner_start_at,refiner_end_at+1,noise_source) |
|
else: |
|
noisy_latent_1 = self.compute_and_generate_noise(sample_model,seed,width,height,batch_size,model_refiner,sampler,scheduler,refiner_total_steps-1,refiner_start_at,refiner_end_at-1,noise_source) |
|
else: |
|
noisy_latent_1 = sample_model |
|
noisy_latent_2 = self.compute_and_generate_noise(sample_model,seed,width,height,batch_size,model_refiner,sampler,scheduler,refiner_total_steps, refiner_start_at,refiner_end_at,noise_source) |
|
if detail_level > 1: |
|
noisy_latent_3 = self.slerp_latents(noisy_latent_1,remap_range(detail_level,1,2,1,0),noisy_latent_2) |
|
else: |
|
noisy_latent_3 = self.slerp_latents(noisy_latent_1,detail_level,noisy_latent_2) |
|
else: |
|
noisy_latent_3 = self.compute_and_generate_noise(sample_model,seed,width,height,batch_size,model_refiner,sampler,scheduler,refiner_total_steps, refiner_start_at,refiner_end_at,noise_source) |
|
|
|
sample_refiner = self.sample(model_refiner,"disable",seed,refiner_total_steps,cfg_scale,sampler,scheduler,CONDITIONING_refiner_pos,CONDITIONING_refiner_neg,noisy_latent_3,refiner_start_at,refiner_end_at,"disable") |
|
|
|
return (sample_refiner,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"KSamplerSDXLAdvanced": KSamplerSDXLAdvanced |
|
} |
|
|