File size: 8,794 Bytes
c422045
 
 
 
e1cdc5b
 
9552183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7881e56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c422045
 
e1cdc5b
 
2ff0836
4b62fcc
 
 
 
 
 
 
 
 
 
a4e85da
bfbc812
2ff0836
e1cdc5b
 
 
 
 
 
2ff0836
 
 
eb838c2
e1cdc5b
 
4b62fcc
 
 
 
 
 
 
 
 
 
 
e1cdc5b
2ff0836
 
 
 
 
 
 
 
 
 
e1cdc5b
 
2ff0836
e1cdc5b
 
2ff0836
 
eb838c2
9552183
 
 
 
7881e56
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
---
license: apache-2.0
tags:
- UNA
- simple-math
- juanako
base_model: abacusai/Smaug-34B-v0.1
datasets:
- fblgit/simple-math
- jondurbin/bagel-v0.3
model-index:
- name: UNA-SimpleSmaug-34b-v1beta
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 74.57
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 70.17
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 45.56
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 32.78
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.15
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.95
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.96
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.33
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
      name: Open LLM Leaderboard
---

# UNA-SimpleSmaug-34b-v1beta

Scoring 04-February-2024 #1 34B model, outperforming its original base model Smaug-34B-v0.1 with `77.41` 😎
Oh, btw.. this one went thru SFT so the abacus inside Smaug is back to normal.. so you can further train/dpo him .. RESET!.. 

*UPDATES* March : Stills undisputed 34B King
                  Smaug 70B stills undisputed 70B King

====
And people wonders.. why there is no UNA of Hermes or Smaug 70B? << i dont think is worth the time to spend on a model that is widely known for not being too useful, likely UNA can fix some of the internal mess.. 
for Hermes, we spoke chitchat quick a couple times but nothing solid, but we would like to make a reborn of excellent models using UNA, just liek we did with UNA-Dolphin where we saw
relevant performance is short time.
===

![UNA](https://huggingface.co/fblgit/UNA-SimpleSmaug-34b-v1beta/resolve/main/unasimple.png)
Applied UNA only on the Attention, not on the MLP's
* Is based on Smaug
* SimpleMath dataset
* It was trained on Axolotl

## Experiment
The thing here is to understand whats the impact of SimpleMath applied at the attention layer during a SFT session and how it impacts on the neural network overall.

Results: Improving mathematican and reasoning capabilities without degrading and presserving previous training sessions.

**And enjoy our ModelSimilarities tool detector** https://github.com/fblgit/model-similarity where we confirmed numerically the bloodties of the model.
## Evals


|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |77.41|
|AI2 Reasoning Challenge (25-Shot)|74.57|
|HellaSwag (10-Shot)              |86.74|
|MMLU (5-Shot)                    |76.68|
|TruthfulQA (0-shot)              |70.17|
|Winogrande (5-shot)              |83.82|
|GSM8k (5-shot)                   |72.48|

```
|    Task     |Version| Metric |Value            |
|-------------|------:|--------|----------------:|
|arc_challenge|     HF|acc_norm| 0.7457337883959 |
|gsm8k        |     HF|acc     | 0.7247915087187 |
|mmlu         |     HF|acc     | 0.7649553475572 |
|mmlu         |     HF|acc_norm| 0.7681713551647 |
|hellaswag    |     HF|acc_norm| 0.8673571001792 | 
|truthfulqa   |     HF|mc2     | 0.7016557407771 |
|winogrande   |     HF|acc     | 0.8382004735595 |
|------------------------------------------------|
```

Increasing GSM, MMLU, ARC, WINO.

## Citations
To abacusai for making Smaug-34B, the Bagel, and all the magic behind the base model.

**If you use the model, provide citation even for merges or anything.**
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta)



# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |23.12|
|IFEval (0-Shot)    |45.56|
|BBH (3-Shot)       |32.78|
|MATH Lvl 5 (4-Shot)| 0.15|
|GPQA (0-shot)      | 8.95|
|MuSR (0-shot)      |11.96|
|MMLU-PRO (5-shot)  |39.33|