yhavinga commited on
Commit
522b344
1 Parent(s): a9310ca

Add pytorch model

Browse files
Files changed (4) hide show
  1. flax_to_pt.py +40 -0
  2. pytorch_model.bin +2 -2
  3. run.sh +62 -0
  4. run_summarization_flax.py +875 -0
flax_to_pt.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import jax.numpy as jnp
4
+
5
+ from transformers import AutoTokenizer
6
+ from transformers import FlaxT5ForConditionalGeneration
7
+ from transformers import T5ForConditionalGeneration
8
+
9
+ tokenizer = AutoTokenizer.from_pretrained("./")
10
+ model_fx = FlaxT5ForConditionalGeneration.from_pretrained("./")
11
+ model_pt = T5ForConditionalGeneration.from_pretrained("./", from_flax=True)
12
+ model_pt.save_pretrained("./")
13
+
14
+ text = """Het is nog niet duidelijk
15
+ welke hoogte het water nabij Venlo heeft bereikt. De hoogwaterpiek is vermoedelijk iets vlakker dan verwacht, maar blijft langer aanhouden, tot zondag 19.00 uur. Vooralsnog zijn er weinig meldingen over schade of overlast, meldt een woordvoerder van Veiligheidsregio Limburg-Noord zaterdag aan NU.nl. Via het Nationaal Rampenfonds is binnen één etmaal al 1 miljoen euro opgehaald voor gedupeerden.
16
+ """
17
+ e_input_ids_fx = tokenizer(text, return_tensors="np", padding=True, max_length=128, truncation=True)
18
+ d_input_ids_fx = jnp.ones((e_input_ids_fx.input_ids.shape[0], 1), dtype="i4") * model_fx.config.decoder_start_token_id
19
+
20
+ print(e_input_ids_fx)
21
+ print(d_input_ids_fx)
22
+
23
+ e_input_ids_pt = tokenizer(text, return_tensors="pt", padding=True, max_length=128, truncation=True)
24
+ d_input_ids_pt = np.ones((e_input_ids_pt.input_ids.shape[0], 1), dtype="i4") * model_pt.config.decoder_start_token_id
25
+
26
+
27
+ print(e_input_ids_pt)
28
+ print(d_input_ids_pt)
29
+
30
+ print()
31
+
32
+ encoder_pt = model_fx.encode(**e_input_ids_pt)
33
+ decoder_pt = model_fx.decode(d_input_ids_pt, encoder_pt)
34
+ logits_pt = decoder_pt.logits
35
+ print(f"Pytorch output: {logits_pt}")
36
+
37
+ encoder_fx = model_fx.encode(**e_input_ids_fx)
38
+ decoder_fx = model_fx.decode(d_input_ids_fx, encoder_fx)
39
+ logits_fx = decoder_fx.logits
40
+ print(f"Flax output: {logits_fx}")
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f076caa70c7c40a4f35fd69e904e3589f3a10f5cbce12efadd5c2818d4fb3070
3
- size 891654079
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837e804cfcfee38ffdbb87dc80de834a7c5aec62634910e6b2514794f848bba2
3
+ size 891650495
run.sh ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ export CUDA_VISIBLE_DEVICES=1
3
+
4
+ MODEL="flax-community/t5-base-dutch"
5
+ OUTPUT="./output"
6
+
7
+ TRAIN="/home/yeb/cnnuxsum/cnnuxsum_train.json"
8
+ VAL="/home/yeb/cnnuxsum/cnnuxsum_val.json"
9
+ TEST="/home/yeb/cnnuxsum/cnnuxsum_test.json"
10
+
11
+ mkdir -p "${OUTPUT}"
12
+
13
+ python ./run_summarization_flax.py \
14
+ --model_name_or_path "${MODEL}" \
15
+ --learning_rate "5e-4" \
16
+ --warmup_steps 500 \
17
+ --do_train \
18
+ --train_file "${TRAIN}" \
19
+ --validation_file "${VAL}" \
20
+ --test_file "${TEST}" \
21
+ --max_train_samples 640000 \
22
+ --max_eval_samples 512 \
23
+ --max_predict_samples 64 \
24
+ --text_column "complete_text" \
25
+ --summary_column "summary_text" \
26
+ --source_prefix "summarize: " \
27
+ --max_source_length 1024 \
28
+ --max_target_length 142 \
29
+ --output_dir "${OUTPUT}" \
30
+ --per_device_train_batch_size=8 \
31
+ --per_device_eval_batch_size=2 \
32
+ --overwrite_output_dir \
33
+ --num_train_epochs="1" \
34
+ --logging_steps="50" \
35
+ --save_steps="2000" \
36
+ --eval_steps="25000000" \
37
+ --num_beams 4
38
+
39
+ # \
40
+ # --do_predict
41
+ # --do_eval \
42
+
43
+
44
+ # \
45
+ # --prediction_debug \
46
+ # --predict_with_generate
47
+
48
+
49
+
50
+
51
+ # --source_prefix "summarize: " \
52
+
53
+ # --lr_scheduler_type="constant" \
54
+
55
+ # --task "summarization" \
56
+ # --early_stopping "true" \
57
+ # --length_penalty "2.0" \
58
+ # --max_length 300 \
59
+ # --min_length 75 \
60
+ # --no_repeat_ngram_size 3 \
61
+ # --num_beams 4 \
62
+ # --prefix "summarize: " \
run_summarization_flax.py ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for summarization.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import sys
24
+ import time
25
+ import random
26
+ import json
27
+ from dataclasses import dataclass, field
28
+ from functools import partial
29
+ from pathlib import Path
30
+ from typing import Callable, Optional
31
+
32
+ import datasets
33
+ import nltk # Here to have a nice missing dependency error message early on
34
+ import numpy as np
35
+ from datasets import Dataset, load_dataset, load_metric
36
+ from tqdm import tqdm
37
+
38
+ import jax
39
+ import jax.numpy as jnp
40
+ import optax
41
+ import transformers
42
+ from filelock import FileLock
43
+ from flax import jax_utils, traverse_util
44
+ from flax.jax_utils import unreplicate
45
+ from flax.training import train_state
46
+ from flax.serialization import to_bytes, from_bytes
47
+ from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
48
+ from transformers import (
49
+ CONFIG_MAPPING,
50
+ FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
51
+ AutoConfig,
52
+ AutoTokenizer,
53
+ FlaxAutoModelForSeq2SeqLM,
54
+ HfArgumentParser,
55
+ TrainingArguments,
56
+ is_tensorboard_available,
57
+ )
58
+ from transformers.file_utils import is_offline_mode
59
+
60
+
61
+ logger = logging.getLogger(__name__)
62
+
63
+ try:
64
+ nltk.data.find("tokenizers/punkt")
65
+ except (LookupError, OSError):
66
+ if is_offline_mode():
67
+ raise LookupError(
68
+ "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
69
+ )
70
+ with FileLock(".lock") as lock:
71
+ nltk.download("punkt", quiet=True)
72
+
73
+
74
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
75
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
76
+
77
+
78
+ @dataclass
79
+ class ModelArguments:
80
+ """
81
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
82
+ """
83
+
84
+ model_name_or_path: Optional[str] = field(
85
+ default=None,
86
+ metadata={
87
+ "help": "The model checkpoint for weights initialization."
88
+ "Don't set if you want to train a model from scratch."
89
+ },
90
+ )
91
+ model_type: Optional[str] = field(
92
+ default=None,
93
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
94
+ )
95
+ config_name: Optional[str] = field(
96
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
97
+ )
98
+ tokenizer_name: Optional[str] = field(
99
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
100
+ )
101
+ cache_dir: Optional[str] = field(
102
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
103
+ )
104
+ use_fast_tokenizer: bool = field(
105
+ default=True,
106
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
107
+ )
108
+ dtype: Optional[str] = field(
109
+ default="float32",
110
+ metadata={
111
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
112
+ },
113
+ )
114
+
115
+
116
+ @dataclass
117
+ class DataTrainingArguments:
118
+ """
119
+ Arguments pertaining to what data we are going to input our model for training and eval.
120
+ """
121
+
122
+ dataset_name: Optional[str] = field(
123
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
124
+ )
125
+ dataset_config_name: Optional[str] = field(
126
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
127
+ )
128
+ text_column: Optional[str] = field(
129
+ default=None,
130
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
131
+ )
132
+ summary_column: Optional[str] = field(
133
+ default=None,
134
+ metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
135
+ )
136
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
137
+ validation_file: Optional[str] = field(
138
+ default=None,
139
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
140
+ )
141
+ test_file: Optional[str] = field(
142
+ default=None,
143
+ metadata={"help": "An optional input evaluation data file to predict the perplexity on (a text file)."},
144
+ )
145
+ max_source_length: Optional[int] = field(
146
+ default=1024,
147
+ metadata={
148
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
149
+ "than this will be truncated, sequences shorter will be padded."
150
+ },
151
+ )
152
+ max_target_length: Optional[int] = field(
153
+ default=128,
154
+ metadata={
155
+ "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
156
+ "than this will be truncated, sequences shorter will be padded."
157
+ },
158
+ )
159
+ val_max_target_length: Optional[int] = field(
160
+ default=None,
161
+ metadata={
162
+ "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
163
+ "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
164
+ "This argument is also used to override the `max_length` param of `model.generate`, which is used "
165
+ "during evaluation."
166
+ },
167
+ )
168
+ max_train_samples: Optional[int] = field(
169
+ default=None,
170
+ metadata={
171
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
172
+ "value if set."
173
+ },
174
+ )
175
+ max_eval_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_predict_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ preprocessing_num_workers: Optional[int] = field(
190
+ default=None,
191
+ metadata={"help": "The number of processes to use for the preprocessing."},
192
+ )
193
+ source_prefix: Optional[str] = field(
194
+ default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
195
+ )
196
+ predict_with_generate: bool = field(
197
+ default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
198
+ )
199
+ num_beams: Optional[int] = field(
200
+ default=None,
201
+ metadata={
202
+ "help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
203
+ "which is used during evaluation."
204
+ },
205
+ )
206
+ overwrite_cache: bool = field(
207
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
208
+ )
209
+ prediction_debug: bool = field(
210
+ default=False,
211
+ metadata={
212
+ "help": "Whether to show some examples of the model prediction"
213
+ },
214
+ )
215
+
216
+ def __post_init__(self):
217
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
218
+ raise ValueError("Need either a dataset name or a training/validation file.")
219
+ else:
220
+ if self.train_file is not None:
221
+ extension = self.train_file.split(".")[-1]
222
+ assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
223
+ if self.validation_file is not None:
224
+ extension = self.validation_file.split(".")[-1]
225
+ assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
226
+ if self.val_max_target_length is None:
227
+ self.val_max_target_length = self.max_target_length
228
+
229
+
230
+ summarization_name_mapping = {
231
+ "amazon_reviews_multi": ("review_body", "review_title"),
232
+ "big_patent": ("description", "abstract"),
233
+ "cnn_dailymail": ("article", "highlights"),
234
+ "orange_sum": ("text", "summary"),
235
+ "pn_summary": ("article", "summary"),
236
+ "psc": ("extract_text", "summary_text"),
237
+ "samsum": ("dialogue", "summary"),
238
+ "thaisum": ("body", "summary"),
239
+ "xglue": ("news_body", "news_title"),
240
+ "xsum": ("document", "summary"),
241
+ "wiki_summary": ("article", "highlights"),
242
+ }
243
+
244
+
245
+ class TrainState(train_state.TrainState):
246
+ dropout_rng: jnp.ndarray
247
+
248
+ def replicate(self):
249
+ return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
250
+
251
+
252
+ def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
253
+ """
254
+ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
255
+ Shuffle batches if `shuffle` is `True`.
256
+ """
257
+ steps_per_epoch = len(dataset) // batch_size
258
+
259
+ if shuffle:
260
+ batch_idx = jax.random.permutation(rng, len(dataset))
261
+ else:
262
+ batch_idx = jnp.arange(len(dataset))
263
+
264
+ batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
265
+ batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
266
+
267
+ for idx in batch_idx:
268
+ batch = dataset[idx]
269
+ batch = {k: jnp.array(v) for k, v in batch.items()}
270
+
271
+ batch = shard(batch)
272
+
273
+ yield batch
274
+
275
+
276
+ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
277
+ summary_writer.scalar("train_time", train_time, step)
278
+
279
+ train_metrics = get_metrics(train_metrics)
280
+ for key, vals in train_metrics.items():
281
+ tag = f"train_{key}"
282
+ for i, val in enumerate(vals):
283
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
284
+
285
+ for metric_name, value in eval_metrics.items():
286
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
287
+
288
+
289
+ def create_learning_rate_fn(
290
+ train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
291
+ ) -> Callable[[int], jnp.array]:
292
+ """Returns a linear warmup, linear_decay learning rate function."""
293
+ steps_per_epoch = train_ds_size // train_batch_size
294
+ num_train_steps = steps_per_epoch * num_train_epochs
295
+ warmup_fn = optax.linear_schedule(init_value=learning_rate, end_value=learning_rate, transition_steps=num_warmup_steps)
296
+ decay_fn = optax.linear_schedule(
297
+ init_value=learning_rate, end_value=learning_rate, transition_steps=num_train_steps - num_warmup_steps
298
+ )
299
+ schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
300
+
301
+ return schedule_fn
302
+
303
+
304
+ def main():
305
+ # See all possible arguments in src/transformers/training_args.py
306
+ # or by passing the --help flag to this script.
307
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
308
+
309
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
310
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
311
+ # If we pass only one argument to the script and it's the path to a json file,
312
+ # let's parse it to get our arguments.
313
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
314
+ else:
315
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
316
+
317
+ if (
318
+ os.path.exists(training_args.output_dir)
319
+ and os.listdir(training_args.output_dir)
320
+ and training_args.do_train
321
+ and not training_args.overwrite_output_dir
322
+ ):
323
+ raise ValueError(
324
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
325
+ "Use --overwrite_output_dir to overcome."
326
+ )
327
+
328
+ # utils
329
+ def mb_item(x):
330
+ return x.item() if hasattr(x, "item") else x
331
+
332
+ # checkpoint functions
333
+ def save_checkpoint(model, save_dir, state, with_opt: bool = True):
334
+ state = jax_utils.unreplicate(state)
335
+ logger.info(f"SAVING CHECKPOINT IN {save_dir}")
336
+ save_dir = f"{save_dir}/ckpt-{mb_item(state.step) - 1}"
337
+ model.save_pretrained(
338
+ save_dir,
339
+ params=state.params,
340
+ push_to_hub=False
341
+ )
342
+ if with_opt:
343
+ with open(os.path.join(save_dir, "opt_state.msgpack"), "wb") as f:
344
+ f.write(to_bytes(state.opt_state))
345
+ with open(os.path.join(save_dir, "training_state.json"), "w") as f:
346
+ json.dump({"step": state.step.item()}, f)
347
+ # logger.info(f"Saving model in main dir")
348
+ # model.save_pretrained(
349
+ # training_args.output_dir,
350
+ # params=state.params,
351
+ # push_to_hub=training_args.push_to_hub,
352
+ # commit_message=f"Saving weights and logs of step {cur_step}",
353
+ # )
354
+ if with_opt:
355
+ with open(os.path.join(training_args.output_dir, "opt_state.msgpack"), "wb") as f:
356
+ f.write(to_bytes(state.opt_state))
357
+ with open(os.path.join(training_args.output_dir, "training_state.json"), "w") as f:
358
+ json.dump({"step": state.step.item()}, f)
359
+ logger.info("checkpoint saved")
360
+
361
+ # Make one log on every process with the configuration for debugging.
362
+ logging.basicConfig(
363
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
364
+ datefmt="%m/%d/%Y %H:%M:%S",
365
+ level=logging.INFO,
366
+ )
367
+ # Setup logging, we only want one process per machine to log things on the screen.
368
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
369
+ if jax.process_index() == 0:
370
+ datasets.utils.logging.set_verbosity_warning()
371
+ transformers.utils.logging.set_verbosity_info()
372
+ else:
373
+ datasets.utils.logging.set_verbosity_error()
374
+ transformers.utils.logging.set_verbosity_error()
375
+
376
+ # Set the verbosity to info of the Transformers logger (on main process only):
377
+ logger.info(f"Training/evaluation parameters {training_args}")
378
+
379
+ # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
380
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
381
+ # (the dataset will be downloaded automatically from the datasets Hub).
382
+ #
383
+ # For CSV/JSON files this script will use the first column for the full texts and the second column for the
384
+ # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
385
+ #
386
+ if data_args.dataset_name is not None:
387
+ # Downloading and loading a dataset from the hub.
388
+ dataset = load_dataset(
389
+ data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
390
+ )
391
+ else:
392
+ data_files = {}
393
+ if data_args.train_file is not None:
394
+ data_files["train"] = data_args.train_file
395
+ extension = data_args.train_file.split(".")[-1]
396
+ if data_args.validation_file is not None:
397
+ data_files["validation"] = data_args.validation_file
398
+ extension = data_args.validation_file.split(".")[-1]
399
+ if data_args.test_file is not None:
400
+ data_files["test"] = data_args.test_file
401
+ extension = data_args.test_file.split(".")[-1]
402
+ dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
403
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
404
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
405
+
406
+ # Load pretrained model and tokenizer
407
+
408
+ if model_args.config_name:
409
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
410
+ elif model_args.model_name_or_path:
411
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
412
+ else:
413
+ config = CONFIG_MAPPING[model_args.model_type]()
414
+ logger.warning("You are instantiating a new config instance from scratch.")
415
+
416
+ if model_args.tokenizer_name:
417
+ tokenizer = AutoTokenizer.from_pretrained(
418
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
419
+ )
420
+ elif model_args.model_name_or_path:
421
+ tokenizer = AutoTokenizer.from_pretrained(
422
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
423
+ )
424
+ else:
425
+ raise ValueError(
426
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
427
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
428
+ )
429
+
430
+ if model_args.model_name_or_path:
431
+ model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
432
+ model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
433
+ )
434
+ else:
435
+ model = FlaxAutoModelForSeq2SeqLM.from_config(
436
+ config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
437
+ )
438
+
439
+ if model.config.decoder_start_token_id is None:
440
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
441
+
442
+ prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
443
+
444
+ # Preprocessing the datasets.
445
+ # We need to tokenize inputs and targets.
446
+ if training_args.do_train:
447
+ column_names = dataset["train"].column_names
448
+ elif training_args.do_eval:
449
+ column_names = dataset["validation"].column_names
450
+ elif training_args.do_predict:
451
+ column_names = dataset["test"].column_names
452
+ else:
453
+ logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
454
+ return
455
+
456
+ # Get the column names for input/target.
457
+ dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
458
+ if data_args.text_column is None:
459
+ text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
460
+ else:
461
+ text_column = data_args.text_column
462
+ if text_column not in column_names:
463
+ raise ValueError(
464
+ f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
465
+ )
466
+ if data_args.summary_column is None:
467
+ summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
468
+ else:
469
+ summary_column = data_args.summary_column
470
+ if summary_column not in column_names:
471
+ raise ValueError(
472
+ f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
473
+ )
474
+
475
+ # Temporarily set max_target_length for training.
476
+ max_target_length = data_args.max_target_length
477
+
478
+ # In Flax, for seq2seq models we need to pass `decoder_input_ids`
479
+ # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
480
+ # for that dynamically import the `shift_tokens_right` function from the model file
481
+ model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
482
+ shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")
483
+
484
+ # Setting padding="max_length" as we need fixed length inputs for jitted functions
485
+ def preprocess_function(examples):
486
+ inputs = examples[text_column]
487
+ targets = examples[summary_column]
488
+ inputs = [prefix + inp for inp in inputs]
489
+ model_inputs = tokenizer(
490
+ inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
491
+ )
492
+
493
+ # Setup the tokenizer for targets
494
+ with tokenizer.as_target_tokenizer():
495
+ labels = tokenizer(
496
+ targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
497
+ )
498
+
499
+ model_inputs["labels"] = labels["input_ids"]
500
+ decoder_input_ids = shift_tokens_right_fn(
501
+ jnp.array(labels["input_ids"]), config.pad_token_id, config.decoder_start_token_id
502
+ )
503
+ model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)
504
+
505
+ # We need decoder_attention_mask so we can ignore pad tokens from loss
506
+ model_inputs["decoder_attention_mask"] = labels["attention_mask"]
507
+
508
+ return model_inputs
509
+
510
+ if training_args.do_train:
511
+ if "train" not in dataset:
512
+ raise ValueError("--do_train requires a train dataset")
513
+ train_dataset = dataset["train"]
514
+ if data_args.max_train_samples is not None:
515
+ train_dataset = train_dataset.select(range(data_args.max_train_samples))
516
+ train_dataset = train_dataset.map(
517
+ preprocess_function,
518
+ batched=True,
519
+ num_proc=data_args.preprocessing_num_workers,
520
+ remove_columns=column_names,
521
+ load_from_cache_file=not data_args.overwrite_cache,
522
+ desc="Running tokenizer on train dataset",
523
+ )
524
+
525
+ if training_args.do_eval:
526
+ max_target_length = data_args.val_max_target_length
527
+ if "validation" not in dataset:
528
+ raise ValueError("--do_eval requires a validation dataset")
529
+ eval_dataset = dataset["validation"]
530
+ if data_args.max_eval_samples is not None:
531
+ eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
532
+ eval_dataset = eval_dataset.map(
533
+ preprocess_function,
534
+ batched=True,
535
+ num_proc=data_args.preprocessing_num_workers,
536
+ remove_columns=column_names,
537
+ load_from_cache_file=not data_args.overwrite_cache,
538
+ desc="Running tokenizer on validation dataset",
539
+ )
540
+
541
+ if training_args.do_predict:
542
+ max_target_length = data_args.val_max_target_length
543
+ if "test" not in dataset:
544
+ raise ValueError("--do_predict requires a test dataset")
545
+ predict_dataset = dataset["test"]
546
+ if data_args.max_predict_samples is not None:
547
+ predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
548
+ predict_dataset = predict_dataset.map(
549
+ preprocess_function,
550
+ batched=True,
551
+ num_proc=data_args.preprocessing_num_workers,
552
+ remove_columns=column_names,
553
+ load_from_cache_file=not data_args.overwrite_cache,
554
+ desc="Running tokenizer on prediction dataset",
555
+ )
556
+
557
+ # Metric
558
+ metric = load_metric("rouge")
559
+
560
+ def postprocess_text(preds, labels):
561
+ preds = [pred.strip() for pred in preds]
562
+ labels = [label.strip() for label in labels]
563
+
564
+ # rougeLSum expects newline after each sentence
565
+ preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
566
+ labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
567
+
568
+ return preds, labels
569
+
570
+ def compute_metrics(preds, labels):
571
+ decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
572
+ decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
573
+
574
+ # Some simple post-processing
575
+ decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
576
+
577
+ if data_args.prediction_debug:
578
+ for index in random.sample(range(len(decoded_labels)), 3):
579
+ logger.info(f'reference: "{decoded_labels[index]}"')
580
+ logger.info(f'predicted: "{decoded_preds[index]}"')
581
+ logger.info('---')
582
+
583
+ result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
584
+ # Extract a few results from ROUGE
585
+ result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
586
+
587
+ prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
588
+ result["gen_len"] = np.mean(prediction_lens)
589
+ result = {k: round(v, 4) for k, v in result.items()}
590
+ return result
591
+
592
+ # Enable tensorboard only on the master node
593
+ has_tensorboard = is_tensorboard_available()
594
+ if has_tensorboard and jax.process_index() == 0:
595
+ try:
596
+ from flax.metrics.tensorboard import SummaryWriter
597
+
598
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
599
+ except ImportError as ie:
600
+ has_tensorboard = False
601
+ logger.warning(
602
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
603
+ )
604
+ else:
605
+ logger.warning(
606
+ "Unable to display metrics through TensorBoard because the package is not installed: "
607
+ "Please run pip install tensorboard to enable."
608
+ )
609
+
610
+ # Initialize our training
611
+ rng = jax.random.PRNGKey(training_args.seed)
612
+ rng, dropout_rng = jax.random.split(rng)
613
+
614
+ # Store some constant
615
+ num_epochs = int(training_args.num_train_epochs)
616
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
617
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
618
+ steps_per_epoch = len(train_dataset) // train_batch_size
619
+ total_train_steps = steps_per_epoch * num_epochs
620
+
621
+ # Create learning rate schedule
622
+ linear_decay_lr_schedule_fn = create_learning_rate_fn(
623
+ len(train_dataset),
624
+ train_batch_size,
625
+ training_args.num_train_epochs,
626
+ training_args.warmup_steps,
627
+ training_args.learning_rate,
628
+ )
629
+
630
+ # We use Optax's "masking" functionality to not apply weight decay
631
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
632
+ # mask boolean with the same structure as the parameters.
633
+ # The mask is True for parameters that should be decayed.
634
+ # Note that this mask is specifically adapted for FlaxBart.
635
+ # For FlaxT5, one should correct the layer norm parameter naming
636
+ # accordingly - see `run_t5_mlm_flax.py` e.g.
637
+ def decay_mask_fn(params):
638
+ flat_params = traverse_util.flatten_dict(params)
639
+ layer_norm_params = [
640
+ (name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
641
+ ]
642
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
643
+ return traverse_util.unflatten_dict(flat_mask)
644
+
645
+ # create adam optimizer
646
+ adamw = optax.adamw(
647
+ learning_rate=linear_decay_lr_schedule_fn,
648
+ b1=training_args.adam_beta1,
649
+ b2=training_args.adam_beta2,
650
+ eps=training_args.adam_epsilon,
651
+ weight_decay=training_args.weight_decay,
652
+ mask=decay_mask_fn,
653
+ )
654
+
655
+ # Setup train state
656
+ state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
657
+
658
+ # label smoothed cross entropy
659
+ def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
660
+ """
661
+ The label smoothing implementation is adapted from Flax's official example:
662
+ https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
663
+ """
664
+ vocab_size = logits.shape[-1]
665
+ confidence = 1.0 - label_smoothing_factor
666
+ low_confidence = (1.0 - confidence) / (vocab_size - 1)
667
+ normalizing_constant = -(
668
+ confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
669
+ )
670
+ soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
671
+
672
+ loss = optax.softmax_cross_entropy(logits, soft_labels)
673
+ loss = loss - normalizing_constant
674
+
675
+ # ignore padded tokens from loss
676
+ loss = loss * padding_mask
677
+ loss = loss.sum() / padding_mask.sum()
678
+ return loss
679
+
680
+ # Define gradient update step fn
681
+ def train_step(state, batch, label_smoothing_factor=0.0):
682
+ dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
683
+
684
+ def compute_loss(params):
685
+ labels = batch.pop("labels")
686
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
687
+ loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
688
+ return loss
689
+
690
+ grad_fn = jax.value_and_grad(compute_loss)
691
+ loss, grad = grad_fn(state.params)
692
+ grad = jax.lax.pmean(grad, "batch")
693
+
694
+ new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
695
+
696
+ metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
697
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
698
+
699
+ return new_state, metrics
700
+
701
+ # Define eval fn
702
+ def eval_step(params, batch, label_smoothing_factor=0.0):
703
+ labels = batch.pop("labels")
704
+ logits = model(**batch, params=params, train=False)[0]
705
+ loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
706
+
707
+ # summarize metrics
708
+ metrics = {"loss": loss}
709
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
710
+ return metrics
711
+
712
+ # Define generation function
713
+ max_length = (
714
+ data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
715
+ )
716
+ num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
717
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
718
+
719
+ def generate_step(params, batch):
720
+ model.params = params
721
+ output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
722
+ return output_ids.sequences
723
+
724
+ # Create parallel version of the train and eval step
725
+ p_train_step = jax.pmap(
726
+ partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
727
+ )
728
+ p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
729
+ p_generate_step = jax.pmap(generate_step, "batch")
730
+
731
+ # Replicate the train state on each device
732
+ state = state.replicate()
733
+
734
+ logger.info("***** Running training *****")
735
+ logger.info(f" Num examples = {len(train_dataset)}")
736
+ logger.info(f" Num Epochs = {num_epochs}")
737
+ logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
738
+ logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
739
+ logger.info(f" Total optimization steps = {total_train_steps}")
740
+
741
+ train_time = 0
742
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
743
+ for epoch in epochs:
744
+ # ======================== Training ================================
745
+ train_start = time.time()
746
+
747
+ # Create sampling rng
748
+ rng, input_rng = jax.random.split(rng)
749
+ train_metrics = []
750
+
751
+ # Generate an epoch by shuffling sampling indices from the train dataset
752
+ train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
753
+ steps_per_epoch = len(train_dataset) // train_batch_size
754
+ # train
755
+ for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
756
+ batch = next(train_loader)
757
+ state, train_metric = p_train_step(state, batch)
758
+ train_metrics.append(train_metric)
759
+
760
+ train_time += time.time() - train_start
761
+
762
+ train_metric = unreplicate(train_metric)
763
+
764
+ epochs.write(
765
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
766
+ )
767
+
768
+ # save checkpoint after each epoch and push checkpoint to the hub
769
+ if jax.process_index() == 0:
770
+ # params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
771
+ # model.save_pretrained(
772
+ # training_args.output_dir,
773
+ # params=params,
774
+ # push_to_hub=training_args.push_to_hub,
775
+ # commit_message=f"Saving weights and logs of epoch {epoch+1}",
776
+ # )
777
+ save_checkpoint(model, training_args.output_dir, state)
778
+
779
+ # ======================== Evaluating ==============================
780
+ if training_args.do_eval:
781
+ eval_metrics = []
782
+ eval_preds = []
783
+ eval_labels = []
784
+
785
+ eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
786
+ eval_steps = len(eval_dataset) // eval_batch_size
787
+ for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
788
+ # Model forward
789
+ batch = next(eval_loader)
790
+ labels = batch["labels"]
791
+
792
+ metrics = p_eval_step(state.params, batch)
793
+ eval_metrics.append(metrics)
794
+
795
+ # generation
796
+ if data_args.predict_with_generate:
797
+ generated_ids = p_generate_step(state.params, batch)
798
+ eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
799
+ eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
800
+
801
+ # normalize eval metrics
802
+ eval_metrics = get_metrics(eval_metrics)
803
+ eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
804
+
805
+ # compute ROUGE metrics
806
+ rouge_desc = ""
807
+ if data_args.predict_with_generate:
808
+ rouge_metrics = compute_metrics(eval_preds, eval_labels)
809
+ eval_metrics.update(rouge_metrics)
810
+ rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
811
+
812
+ # Print metrics and update progress bar
813
+ desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
814
+ epochs.write(desc)
815
+ epochs.desc = desc
816
+
817
+ # Save metrics
818
+ if has_tensorboard and jax.process_index() == 0:
819
+ cur_step = epoch * (len(train_dataset) // train_batch_size)
820
+ write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
821
+
822
+ # ======================== Prediction loop ==============================
823
+ if training_args.do_predict:
824
+ logger.info("*** Predict ***")
825
+
826
+ pred_metrics = []
827
+ pred_generations = []
828
+ pred_labels = []
829
+
830
+ pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
831
+ pred_steps = len(predict_dataset) // eval_batch_size
832
+ for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
833
+ # Model forward
834
+ batch = next(pred_loader)
835
+ labels = batch["labels"]
836
+
837
+ metrics = p_eval_step(state.params, batch)
838
+ pred_metrics.append(metrics)
839
+
840
+ # generation
841
+ if data_args.predict_with_generate:
842
+ generated_ids = p_generate_step(state.params, batch)
843
+ pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
844
+ pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
845
+
846
+ # normalize prediction metrics
847
+ pred_metrics = get_metrics(pred_metrics)
848
+ pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
849
+
850
+ # compute ROUGE metrics
851
+ rouge_desc = ""
852
+ if data_args.predict_with_generate:
853
+ rouge_metrics = compute_metrics(pred_generations, pred_labels)
854
+ pred_metrics.update(rouge_metrics)
855
+ rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
856
+
857
+ # Print metrics
858
+ desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
859
+ logger.info(desc)
860
+
861
+ # save checkpoint after each epoch and push checkpoint to the hub
862
+ if jax.process_index() == 0:
863
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
864
+ model.save_pretrained(
865
+ training_args.output_dir,
866
+ params=params,
867
+ push_to_hub=training_args.push_to_hub,
868
+ commit_message=f"Saving weights and logs of epoch {epoch+1}",
869
+ )
870
+ # save_checkpoint(model, training_args.output_dir, state)
871
+
872
+
873
+
874
+ if __name__ == "__main__":
875
+ main()