ganchengguang
commited on
Commit
•
b96343b
1
Parent(s):
954e4d3
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,27 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
Please following paper's format to use this model.
|
5 |
+
|
6 |
+
input: SPRiNGSと最も仲の良いライバルグループ。
|
7 |
+
<社会><文芸><学問><技術><自然>
|
8 |
+
固有表現抽出
|
9 |
+
|
10 |
+
output: <社会>固有表現抽出:その他の組織名;SPRiNGS
|
11 |
+
|
12 |
+
generated_ids = model.generate(inputs, max_new_tokens=2000) #Don't need any other set, just max new tokens.
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
paper cite:
|
17 |
+
https://arxiv.org/abs/2311.06838
|
18 |
+
|
19 |
+
bib:
|
20 |
+
@misc{gan2023giellm,
|
21 |
+
title={GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect},
|
22 |
+
author={Chengguang Gan and Qinghao Zhang and Tatsunori Mori},
|
23 |
+
year={2023},
|
24 |
+
eprint={2311.06838},
|
25 |
+
archivePrefix={arXiv},
|
26 |
+
primaryClass={cs.CL}
|
27 |
+
}
|