update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ai_light_dance
|
6 |
+
model-index:
|
7 |
+
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1) on the ai_light_dance dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.4720
|
19 |
+
- Wer: 0.1388
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 100
|
47 |
+
- num_epochs: 50.0
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 0.3238 | 0.99 | 69 | 0.4581 | 0.2081 |
|
55 |
+
| 0.275 | 1.99 | 138 | 0.6494 | 0.3343 |
|
56 |
+
| 0.2965 | 2.99 | 207 | 0.6193 | 0.2275 |
|
57 |
+
| 0.3406 | 3.99 | 276 | 0.6934 | 0.2615 |
|
58 |
+
| 0.3906 | 4.99 | 345 | 0.6265 | 0.1835 |
|
59 |
+
| 0.4643 | 5.99 | 414 | 0.5879 | 0.1899 |
|
60 |
+
| 0.4652 | 6.99 | 483 | 0.4961 | 0.1604 |
|
61 |
+
| 0.4512 | 7.99 | 552 | 0.5712 | 0.2801 |
|
62 |
+
| 0.5321 | 8.99 | 621 | 0.6898 | 0.2936 |
|
63 |
+
| 0.64 | 9.99 | 690 | 0.5916 | 0.2648 |
|
64 |
+
| 0.2959 | 10.99 | 759 | 0.5574 | 0.1745 |
|
65 |
+
| 0.2053 | 11.99 | 828 | 0.5216 | 0.2009 |
|
66 |
+
| 0.2433 | 12.99 | 897 | 0.4738 | 0.1643 |
|
67 |
+
| 0.2036 | 13.99 | 966 | 0.5063 | 0.1651 |
|
68 |
+
| 0.2654 | 14.99 | 1035 | 0.4904 | 0.1511 |
|
69 |
+
| 0.3641 | 15.99 | 1104 | 0.4660 | 0.1669 |
|
70 |
+
| 0.373 | 16.99 | 1173 | 0.5133 | 0.2106 |
|
71 |
+
| 0.4715 | 17.99 | 1242 | 0.5313 | 0.1912 |
|
72 |
+
| 0.4893 | 18.99 | 1311 | 0.5152 | 0.1712 |
|
73 |
+
| 0.4875 | 19.99 | 1380 | 0.5482 | 0.1718 |
|
74 |
+
| 0.1971 | 20.99 | 1449 | 0.4566 | 0.1449 |
|
75 |
+
| 0.1286 | 21.99 | 1518 | 0.4515 | 0.1478 |
|
76 |
+
| 0.1472 | 22.99 | 1587 | 0.5059 | 0.1418 |
|
77 |
+
| 0.1917 | 23.99 | 1656 | 0.5583 | 0.1457 |
|
78 |
+
| 0.2874 | 24.99 | 1725 | 0.5195 | 0.1503 |
|
79 |
+
| 0.2252 | 25.99 | 1794 | 0.4409 | 0.1506 |
|
80 |
+
| 0.3142 | 26.99 | 1863 | 0.4180 | 0.1433 |
|
81 |
+
| 0.385 | 27.99 | 1932 | 0.4708 | 0.1367 |
|
82 |
+
| 0.4296 | 28.99 | 2001 | 0.4740 | 0.1506 |
|
83 |
+
| 0.4404 | 29.99 | 2070 | 0.4652 | 0.1646 |
|
84 |
+
| 0.2466 | 30.99 | 2139 | 0.5013 | 0.1528 |
|
85 |
+
| 0.1017 | 31.99 | 2208 | 0.4578 | 0.1552 |
|
86 |
+
| 0.1383 | 32.99 | 2277 | 0.5026 | 0.1419 |
|
87 |
+
| 0.1719 | 33.99 | 2346 | 0.4651 | 0.1442 |
|
88 |
+
| 0.1808 | 34.99 | 2415 | 0.4499 | 0.1412 |
|
89 |
+
| 0.2429 | 35.99 | 2484 | 0.4523 | 0.1472 |
|
90 |
+
| 0.2651 | 36.99 | 2553 | 0.4544 | 0.1397 |
|
91 |
+
| 0.2748 | 37.99 | 2622 | 0.4181 | 0.1386 |
|
92 |
+
| 0.4171 | 38.99 | 2691 | 0.4385 | 0.1334 |
|
93 |
+
| 0.4119 | 39.99 | 2760 | 0.4568 | 0.1504 |
|
94 |
+
| 0.1453 | 40.99 | 2829 | 0.4425 | 0.1431 |
|
95 |
+
| 0.105 | 41.99 | 2898 | 0.4367 | 0.1353 |
|
96 |
+
| 0.1205 | 42.99 | 2967 | 0.4418 | 0.1340 |
|
97 |
+
| 0.2039 | 43.99 | 3036 | 0.4586 | 0.1379 |
|
98 |
+
| 0.1773 | 44.99 | 3105 | 0.4686 | 0.1391 |
|
99 |
+
| 0.2186 | 45.99 | 3174 | 0.4975 | 0.1446 |
|
100 |
+
| 0.2358 | 46.99 | 3243 | 0.4886 | 0.1448 |
|
101 |
+
| 0.3525 | 47.99 | 3312 | 0.4706 | 0.1398 |
|
102 |
+
| 0.3713 | 48.99 | 3381 | 0.4713 | 0.1388 |
|
103 |
+
| 0.3543 | 49.99 | 3450 | 0.4720 | 0.1388 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.24.0.dev0
|
109 |
+
- Pytorch 1.12.1+cu113
|
110 |
+
- Datasets 2.6.1
|
111 |
+
- Tokenizers 0.13.1
|