File size: 1,503 Bytes
319b69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "c9140a01-4f24-4dc2-8d8f-686f38dd5385",
   "metadata": {},
   "outputs": [],
   "source": [
    "path = '/root/autodl-tmp/labeled-recipes/data/train-00000-of-00001-5dd0d415a357ff24.parquet'\n",
    "output_file_name = '/root/autodl-tmp/data/train.jsonl'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "24d9b3a4-81e1-44c4-a25b-38c2bda4fdac",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "# Read the Parquet file into a DataFrame\n",
    "df = pd.read_parquet(path, engine='pyarrow')\n",
    "\n",
    "# Convert the DataFrame to JSONL and save it to a file\n",
    "with open(output_file_name, 'w') as f:\n",
    "    for index, row in df.iterrows():\n",
    "        json_row = row.to_json()\n",
    "        f.write(json_row + '\\n')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e4c72fcf-a59b-4a6e-be45-f2f66e28bf4a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}