File size: 1,503 Bytes
319b69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 15,
"id": "c9140a01-4f24-4dc2-8d8f-686f38dd5385",
"metadata": {},
"outputs": [],
"source": [
"path = '/root/autodl-tmp/labeled-recipes/data/train-00000-of-00001-5dd0d415a357ff24.parquet'\n",
"output_file_name = '/root/autodl-tmp/data/train.jsonl'"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "24d9b3a4-81e1-44c4-a25b-38c2bda4fdac",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# Read the Parquet file into a DataFrame\n",
"df = pd.read_parquet(path, engine='pyarrow')\n",
"\n",
"# Convert the DataFrame to JSONL and save it to a file\n",
"with open(output_file_name, 'w') as f:\n",
" for index, row in df.iterrows():\n",
" json_row = row.to_json()\n",
" f.write(json_row + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4c72fcf-a59b-4a6e-be45-f2f66e28bf4a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|