--- license: apache-2.0 language: - en metrics: - accuracy base_model: - distilbert/distilbert-base-uncased-finetuned-sst-2-english library_name: sklearn --- # Potato Price Prediction Model This model predicts potato prices based on various features such as arrival quantity, temperature, humidity, and historical price data. ## Input Features - Date: Date of prediction (format: YYYY-MM-DD) - ArrivalQuantity: Quantity of potatoes arriving at the market - Temperature: Temperature on the given date - Humidity: Humidity on the given date - Wind direction: Wind direction on the given date - Events: Any significant events on the given date - Impacts: Any significant impacts on the given date - PriceLag1: Previous day's price - PriceLag7: Price from 7 days ago - PriceRollingMean7: 7-day rolling mean price - PriceRollingStd7: 7-day rolling standard deviation of price - PrevWeekAvgPrice: Average price of the previous week ## Output The model returns a predicted potato price for the given input features. ## Usage ```python from potato_price_model import predictor input_data = { 'Date': '2024-09-14', 'ArrivalQuantity': 1000, 'Temperature': 25, 'Humidity': 60, 'Wind direction': 180, 'Events': 'Normal day', 'Impacts': 'No significant impacts', 'PriceLag1': 50, 'PriceLag7': 48, 'PriceRollingMean7': 49, 'PriceRollingStd7': 2, 'PrevWeekAvgPrice': 49 } result = predictor.predict(input_data) print(f"Predicted potato price: {result['predicted_price']}") ```