patrickvonplaten
commited on
Commit
•
03c0c42
0
Parent(s):
Duplicate from hf-internal-testing/tiny-sdxl-custom-components
Browse files- .gitattributes +35 -0
- README.md +13 -0
- model_index.json +33 -0
- my_pipeline.py +974 -0
- scheduler/my_scheduler.py +514 -0
- scheduler/scheduler_config.json +14 -0
- text_encoder/config.json +23 -0
- text_encoder/flax_model.msgpack +3 -0
- text_encoder/model.onnx +3 -0
- text_encoder/openvino_model.bin +3 -0
- text_encoder/openvino_model.xml +0 -0
- text_encoder/pytorch_model.bin +3 -0
- text_encoder_2/config.json +23 -0
- text_encoder_2/flax_model.msgpack +3 -0
- text_encoder_2/model.onnx +3 -0
- text_encoder_2/openvino_model.bin +3 -0
- text_encoder_2/openvino_model.xml +0 -0
- text_encoder_2/pytorch_model.bin +3 -0
- tokenizer/merges.txt +647 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +33 -0
- tokenizer/vocab.json +1002 -0
- tokenizer_2/merges.txt +647 -0
- tokenizer_2/special_tokens_map.json +24 -0
- tokenizer_2/tokenizer_config.json +33 -0
- tokenizer_2/vocab.json +1002 -0
- unet/config.json +64 -0
- unet/diffusion_flax_model.msgpack +3 -0
- unet/diffusion_pytorch_model.bin +3 -0
- unet/model.onnx +3 -0
- unet/my_unet_model.py +1129 -0
- unet/openvino_model.bin +3 -0
- unet/openvino_model.xml +0 -0
- vae/config.json +24 -0
- vae/diffusion_flax_model.msgpack +3 -0
- vae/diffusion_pytorch_model.bin +3 -0
- vae_decoder/config.json +24 -0
- vae_decoder/model.onnx +3 -0
- vae_decoder/openvino_model.bin +3 -0
- vae_decoder/openvino_model.xml +0 -0
- vae_encoder/config.json +24 -0
- vae_encoder/model.onnx +3 -0
- vae_encoder/openvino_model.bin +3 -0
- vae_encoder/openvino_model.xml +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: diffusers
|
3 |
+
tags:
|
4 |
+
- text-to-image
|
5 |
+
---
|
6 |
+
|
7 |
+
```python
|
8 |
+
from diffusers import DiffusionPipeline
|
9 |
+
|
10 |
+
pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
|
11 |
+
```
|
12 |
+
|
13 |
+
The pipeline was created using this [Colab Notebook](https://colab.research.google.com/gist/sayakpaul/a7b986af7e9ea26562eed4ec1410d766/scratchpad.ipynb).
|
model_index.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionXLPipeline",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"force_zeros_for_empty_prompt": true,
|
5 |
+
"scheduler": [
|
6 |
+
"my_scheduler",
|
7 |
+
"MyScheduler"
|
8 |
+
],
|
9 |
+
"text_encoder": [
|
10 |
+
"transformers",
|
11 |
+
"CLIPTextModel"
|
12 |
+
],
|
13 |
+
"text_encoder_2": [
|
14 |
+
"transformers",
|
15 |
+
"CLIPTextModelWithProjection"
|
16 |
+
],
|
17 |
+
"tokenizer": [
|
18 |
+
"transformers",
|
19 |
+
"CLIPTokenizer"
|
20 |
+
],
|
21 |
+
"tokenizer_2": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTokenizer"
|
24 |
+
],
|
25 |
+
"unet": [
|
26 |
+
"my_unet_model",
|
27 |
+
"MyUNetModel"
|
28 |
+
],
|
29 |
+
"vae": [
|
30 |
+
"diffusers",
|
31 |
+
"AutoencoderKL"
|
32 |
+
]
|
33 |
+
}
|
my_pipeline.py
ADDED
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
20 |
+
|
21 |
+
from diffusers.image_processor import VaeImageProcessor
|
22 |
+
from diffusers.loaders import (
|
23 |
+
FromSingleFileMixin,
|
24 |
+
StableDiffusionXLLoraLoaderMixin,
|
25 |
+
TextualInversionLoaderMixin,
|
26 |
+
)
|
27 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.models.attention_processor import (
|
29 |
+
AttnProcessor2_0,
|
30 |
+
LoRAAttnProcessor2_0,
|
31 |
+
LoRAXFormersAttnProcessor,
|
32 |
+
XFormersAttnProcessor,
|
33 |
+
)
|
34 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
35 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
36 |
+
from diffusers.utils import (
|
37 |
+
USE_PEFT_BACKEND,
|
38 |
+
is_invisible_watermark_available,
|
39 |
+
is_torch_xla_available,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
scale_lora_layers,
|
43 |
+
unscale_lora_layers,
|
44 |
+
)
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers import DiffusionPipeline
|
47 |
+
|
48 |
+
|
49 |
+
if is_torch_xla_available():
|
50 |
+
import torch_xla.core.xla_model as xm
|
51 |
+
|
52 |
+
XLA_AVAILABLE = True
|
53 |
+
else:
|
54 |
+
XLA_AVAILABLE = False
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
58 |
+
|
59 |
+
EXAMPLE_DOC_STRING = """
|
60 |
+
Examples:
|
61 |
+
```py
|
62 |
+
>>> import torch
|
63 |
+
>>> from diffusers import MyPipeline
|
64 |
+
|
65 |
+
>>> pipe = MyPipeline.from_pretrained(
|
66 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
67 |
+
... )
|
68 |
+
>>> pipe = pipe.to("cuda")
|
69 |
+
|
70 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
71 |
+
>>> image = pipe(prompt).images[0]
|
72 |
+
```
|
73 |
+
"""
|
74 |
+
|
75 |
+
|
76 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
77 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
78 |
+
"""
|
79 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
80 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
81 |
+
"""
|
82 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
83 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
84 |
+
# rescale the results from guidance (fixes overexposure)
|
85 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
86 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
87 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
88 |
+
return noise_cfg
|
89 |
+
|
90 |
+
|
91 |
+
class MyPipeline(
|
92 |
+
DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
93 |
+
):
|
94 |
+
r"""
|
95 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
96 |
+
|
97 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
98 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
99 |
+
|
100 |
+
In addition the pipeline inherits the following loading methods:
|
101 |
+
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
|
102 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
103 |
+
|
104 |
+
as well as the following saving methods:
|
105 |
+
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
|
106 |
+
|
107 |
+
Args:
|
108 |
+
vae ([`AutoencoderKL`]):
|
109 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
110 |
+
text_encoder ([`CLIPTextModel`]):
|
111 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
112 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
113 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
114 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
115 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
116 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
117 |
+
specifically the
|
118 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
119 |
+
variant.
|
120 |
+
tokenizer (`CLIPTokenizer`):
|
121 |
+
Tokenizer of class
|
122 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
123 |
+
tokenizer_2 (`CLIPTokenizer`):
|
124 |
+
Second Tokenizer of class
|
125 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
126 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
127 |
+
scheduler ([`SchedulerMixin`]):
|
128 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
129 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
130 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
131 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
132 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
133 |
+
add_watermarker (`bool`, *optional*):
|
134 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
135 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
136 |
+
watermarker will be used.
|
137 |
+
"""
|
138 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
139 |
+
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
vae: AutoencoderKL,
|
144 |
+
text_encoder: CLIPTextModel,
|
145 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
146 |
+
tokenizer: CLIPTokenizer,
|
147 |
+
tokenizer_2: CLIPTokenizer,
|
148 |
+
unet: UNet2DConditionModel,
|
149 |
+
scheduler: KarrasDiffusionSchedulers,
|
150 |
+
force_zeros_for_empty_prompt: bool = True,
|
151 |
+
add_watermarker: Optional[bool] = None,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
|
155 |
+
self.register_modules(
|
156 |
+
vae=vae,
|
157 |
+
text_encoder=text_encoder,
|
158 |
+
text_encoder_2=text_encoder_2,
|
159 |
+
tokenizer=tokenizer,
|
160 |
+
tokenizer_2=tokenizer_2,
|
161 |
+
unet=unet,
|
162 |
+
scheduler=scheduler,
|
163 |
+
)
|
164 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
165 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
166 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
167 |
+
|
168 |
+
self.default_sample_size = self.unet.config.sample_size
|
169 |
+
|
170 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
171 |
+
|
172 |
+
self.watermark = None
|
173 |
+
|
174 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
175 |
+
def enable_vae_slicing(self):
|
176 |
+
r"""
|
177 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
178 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
179 |
+
"""
|
180 |
+
self.vae.enable_slicing()
|
181 |
+
|
182 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
183 |
+
def disable_vae_slicing(self):
|
184 |
+
r"""
|
185 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
186 |
+
computing decoding in one step.
|
187 |
+
"""
|
188 |
+
self.vae.disable_slicing()
|
189 |
+
|
190 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
191 |
+
def enable_vae_tiling(self):
|
192 |
+
r"""
|
193 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
194 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
195 |
+
processing larger images.
|
196 |
+
"""
|
197 |
+
self.vae.enable_tiling()
|
198 |
+
|
199 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
200 |
+
def disable_vae_tiling(self):
|
201 |
+
r"""
|
202 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
203 |
+
computing decoding in one step.
|
204 |
+
"""
|
205 |
+
self.vae.disable_tiling()
|
206 |
+
|
207 |
+
def encode_prompt(
|
208 |
+
self,
|
209 |
+
prompt: str,
|
210 |
+
prompt_2: Optional[str] = None,
|
211 |
+
device: Optional[torch.device] = None,
|
212 |
+
num_images_per_prompt: int = 1,
|
213 |
+
do_classifier_free_guidance: bool = True,
|
214 |
+
negative_prompt: Optional[str] = None,
|
215 |
+
negative_prompt_2: Optional[str] = None,
|
216 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
217 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
218 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
219 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
220 |
+
lora_scale: Optional[float] = None,
|
221 |
+
clip_skip: Optional[int] = None,
|
222 |
+
):
|
223 |
+
r"""
|
224 |
+
Encodes the prompt into text encoder hidden states.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
prompt (`str` or `List[str]`, *optional*):
|
228 |
+
prompt to be encoded
|
229 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
230 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
231 |
+
used in both text-encoders
|
232 |
+
device: (`torch.device`):
|
233 |
+
torch device
|
234 |
+
num_images_per_prompt (`int`):
|
235 |
+
number of images that should be generated per prompt
|
236 |
+
do_classifier_free_guidance (`bool`):
|
237 |
+
whether to use classifier free guidance or not
|
238 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
239 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
240 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
241 |
+
less than `1`).
|
242 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
243 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
244 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
245 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
246 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
247 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
248 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
249 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
250 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
251 |
+
argument.
|
252 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
253 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
254 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
255 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
256 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
257 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
258 |
+
input argument.
|
259 |
+
lora_scale (`float`, *optional*):
|
260 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
261 |
+
clip_skip (`int`, *optional*):
|
262 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
263 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
264 |
+
"""
|
265 |
+
device = device or self._execution_device
|
266 |
+
|
267 |
+
# set lora scale so that monkey patched LoRA
|
268 |
+
# function of text encoder can correctly access it
|
269 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
270 |
+
self._lora_scale = lora_scale
|
271 |
+
|
272 |
+
# dynamically adjust the LoRA scale
|
273 |
+
if self.text_encoder is not None:
|
274 |
+
if not USE_PEFT_BACKEND:
|
275 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
276 |
+
else:
|
277 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
278 |
+
|
279 |
+
if self.text_encoder_2 is not None:
|
280 |
+
if not USE_PEFT_BACKEND:
|
281 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
282 |
+
else:
|
283 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
284 |
+
|
285 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
286 |
+
|
287 |
+
if prompt is not None:
|
288 |
+
batch_size = len(prompt)
|
289 |
+
else:
|
290 |
+
batch_size = prompt_embeds.shape[0]
|
291 |
+
|
292 |
+
# Define tokenizers and text encoders
|
293 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
294 |
+
text_encoders = (
|
295 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
296 |
+
)
|
297 |
+
|
298 |
+
if prompt_embeds is None:
|
299 |
+
prompt_2 = prompt_2 or prompt
|
300 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
301 |
+
|
302 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
303 |
+
prompt_embeds_list = []
|
304 |
+
prompts = [prompt, prompt_2]
|
305 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
306 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
307 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
308 |
+
|
309 |
+
text_inputs = tokenizer(
|
310 |
+
prompt,
|
311 |
+
padding="max_length",
|
312 |
+
max_length=tokenizer.model_max_length,
|
313 |
+
truncation=True,
|
314 |
+
return_tensors="pt",
|
315 |
+
)
|
316 |
+
|
317 |
+
text_input_ids = text_inputs.input_ids
|
318 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
319 |
+
|
320 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
321 |
+
text_input_ids, untruncated_ids
|
322 |
+
):
|
323 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
324 |
+
logger.warning(
|
325 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
326 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
327 |
+
)
|
328 |
+
|
329 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
330 |
+
|
331 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
332 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
333 |
+
if clip_skip is None:
|
334 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
335 |
+
else:
|
336 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
337 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
338 |
+
|
339 |
+
prompt_embeds_list.append(prompt_embeds)
|
340 |
+
|
341 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
342 |
+
|
343 |
+
# get unconditional embeddings for classifier free guidance
|
344 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
345 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
346 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
347 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
348 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
349 |
+
negative_prompt = negative_prompt or ""
|
350 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
351 |
+
|
352 |
+
# normalize str to list
|
353 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
354 |
+
negative_prompt_2 = (
|
355 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
356 |
+
)
|
357 |
+
|
358 |
+
uncond_tokens: List[str]
|
359 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
360 |
+
raise TypeError(
|
361 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
362 |
+
f" {type(prompt)}."
|
363 |
+
)
|
364 |
+
elif batch_size != len(negative_prompt):
|
365 |
+
raise ValueError(
|
366 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
367 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
368 |
+
" the batch size of `prompt`."
|
369 |
+
)
|
370 |
+
else:
|
371 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
372 |
+
|
373 |
+
negative_prompt_embeds_list = []
|
374 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
375 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
376 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
377 |
+
|
378 |
+
max_length = prompt_embeds.shape[1]
|
379 |
+
uncond_input = tokenizer(
|
380 |
+
negative_prompt,
|
381 |
+
padding="max_length",
|
382 |
+
max_length=max_length,
|
383 |
+
truncation=True,
|
384 |
+
return_tensors="pt",
|
385 |
+
)
|
386 |
+
|
387 |
+
negative_prompt_embeds = text_encoder(
|
388 |
+
uncond_input.input_ids.to(device),
|
389 |
+
output_hidden_states=True,
|
390 |
+
)
|
391 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
392 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
393 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
394 |
+
|
395 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
396 |
+
|
397 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
398 |
+
|
399 |
+
if self.text_encoder_2 is not None:
|
400 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
401 |
+
else:
|
402 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
403 |
+
|
404 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
405 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
406 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
407 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
408 |
+
|
409 |
+
if do_classifier_free_guidance:
|
410 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
411 |
+
seq_len = negative_prompt_embeds.shape[1]
|
412 |
+
|
413 |
+
if self.text_encoder_2 is not None:
|
414 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
415 |
+
else:
|
416 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
417 |
+
|
418 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
419 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
420 |
+
|
421 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
422 |
+
bs_embed * num_images_per_prompt, -1
|
423 |
+
)
|
424 |
+
if do_classifier_free_guidance:
|
425 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
426 |
+
bs_embed * num_images_per_prompt, -1
|
427 |
+
)
|
428 |
+
|
429 |
+
if self.text_encoder is not None:
|
430 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
431 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
432 |
+
unscale_lora_layers(self.text_encoder)
|
433 |
+
|
434 |
+
if self.text_encoder_2 is not None:
|
435 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
436 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
437 |
+
unscale_lora_layers(self.text_encoder_2)
|
438 |
+
|
439 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
440 |
+
|
441 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
442 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
443 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
444 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
445 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
446 |
+
# and should be between [0, 1]
|
447 |
+
|
448 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
449 |
+
extra_step_kwargs = {}
|
450 |
+
if accepts_eta:
|
451 |
+
extra_step_kwargs["eta"] = eta
|
452 |
+
|
453 |
+
# check if the scheduler accepts generator
|
454 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
455 |
+
if accepts_generator:
|
456 |
+
extra_step_kwargs["generator"] = generator
|
457 |
+
return extra_step_kwargs
|
458 |
+
|
459 |
+
def check_inputs(
|
460 |
+
self,
|
461 |
+
prompt,
|
462 |
+
prompt_2,
|
463 |
+
height,
|
464 |
+
width,
|
465 |
+
callback_steps,
|
466 |
+
negative_prompt=None,
|
467 |
+
negative_prompt_2=None,
|
468 |
+
prompt_embeds=None,
|
469 |
+
negative_prompt_embeds=None,
|
470 |
+
pooled_prompt_embeds=None,
|
471 |
+
negative_pooled_prompt_embeds=None,
|
472 |
+
):
|
473 |
+
if height % 8 != 0 or width % 8 != 0:
|
474 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
475 |
+
|
476 |
+
if (callback_steps is None) or (
|
477 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
478 |
+
):
|
479 |
+
raise ValueError(
|
480 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
481 |
+
f" {type(callback_steps)}."
|
482 |
+
)
|
483 |
+
|
484 |
+
if prompt is not None and prompt_embeds is not None:
|
485 |
+
raise ValueError(
|
486 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
487 |
+
" only forward one of the two."
|
488 |
+
)
|
489 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
490 |
+
raise ValueError(
|
491 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
492 |
+
" only forward one of the two."
|
493 |
+
)
|
494 |
+
elif prompt is None and prompt_embeds is None:
|
495 |
+
raise ValueError(
|
496 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
497 |
+
)
|
498 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
499 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
500 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
501 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
502 |
+
|
503 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
504 |
+
raise ValueError(
|
505 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
506 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
507 |
+
)
|
508 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
509 |
+
raise ValueError(
|
510 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
511 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
512 |
+
)
|
513 |
+
|
514 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
515 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
516 |
+
raise ValueError(
|
517 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
518 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
519 |
+
f" {negative_prompt_embeds.shape}."
|
520 |
+
)
|
521 |
+
|
522 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
523 |
+
raise ValueError(
|
524 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
525 |
+
)
|
526 |
+
|
527 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
528 |
+
raise ValueError(
|
529 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
530 |
+
)
|
531 |
+
|
532 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
533 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
534 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
535 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
536 |
+
raise ValueError(
|
537 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
538 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
539 |
+
)
|
540 |
+
|
541 |
+
if latents is None:
|
542 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
543 |
+
else:
|
544 |
+
latents = latents.to(device)
|
545 |
+
|
546 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
547 |
+
latents = latents * self.scheduler.init_noise_sigma
|
548 |
+
return latents
|
549 |
+
|
550 |
+
def _get_add_time_ids(
|
551 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
552 |
+
):
|
553 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
554 |
+
|
555 |
+
passed_add_embed_dim = (
|
556 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
557 |
+
)
|
558 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
559 |
+
|
560 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
561 |
+
raise ValueError(
|
562 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
563 |
+
)
|
564 |
+
|
565 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
566 |
+
return add_time_ids
|
567 |
+
|
568 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
569 |
+
def upcast_vae(self):
|
570 |
+
dtype = self.vae.dtype
|
571 |
+
self.vae.to(dtype=torch.float32)
|
572 |
+
use_torch_2_0_or_xformers = isinstance(
|
573 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
574 |
+
(
|
575 |
+
AttnProcessor2_0,
|
576 |
+
XFormersAttnProcessor,
|
577 |
+
LoRAXFormersAttnProcessor,
|
578 |
+
LoRAAttnProcessor2_0,
|
579 |
+
),
|
580 |
+
)
|
581 |
+
# if xformers or torch_2_0 is used attention block does not need
|
582 |
+
# to be in float32 which can save lots of memory
|
583 |
+
if use_torch_2_0_or_xformers:
|
584 |
+
self.vae.post_quant_conv.to(dtype)
|
585 |
+
self.vae.decoder.conv_in.to(dtype)
|
586 |
+
self.vae.decoder.mid_block.to(dtype)
|
587 |
+
|
588 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
589 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
590 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
591 |
+
|
592 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
593 |
+
|
594 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
595 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
s1 (`float`):
|
599 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
600 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
601 |
+
s2 (`float`):
|
602 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
603 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
604 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
605 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
606 |
+
"""
|
607 |
+
if not hasattr(self, "unet"):
|
608 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
609 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
610 |
+
|
611 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
612 |
+
def disable_freeu(self):
|
613 |
+
"""Disables the FreeU mechanism if enabled."""
|
614 |
+
self.unet.disable_freeu()
|
615 |
+
|
616 |
+
@torch.no_grad()
|
617 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
618 |
+
def __call__(
|
619 |
+
self,
|
620 |
+
prompt: Union[str, List[str]] = None,
|
621 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
622 |
+
height: Optional[int] = None,
|
623 |
+
width: Optional[int] = None,
|
624 |
+
num_inference_steps: int = 50,
|
625 |
+
denoising_end: Optional[float] = None,
|
626 |
+
guidance_scale: float = 5.0,
|
627 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
628 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
629 |
+
num_images_per_prompt: Optional[int] = 1,
|
630 |
+
eta: float = 0.0,
|
631 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
632 |
+
latents: Optional[torch.FloatTensor] = None,
|
633 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
634 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
635 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
636 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
637 |
+
output_type: Optional[str] = "pil",
|
638 |
+
return_dict: bool = True,
|
639 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
640 |
+
callback_steps: int = 1,
|
641 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
642 |
+
guidance_rescale: float = 0.0,
|
643 |
+
original_size: Optional[Tuple[int, int]] = None,
|
644 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
645 |
+
target_size: Optional[Tuple[int, int]] = None,
|
646 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
647 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
648 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
649 |
+
clip_skip: Optional[int] = None,
|
650 |
+
):
|
651 |
+
r"""
|
652 |
+
Function invoked when calling the pipeline for generation.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
prompt (`str` or `List[str]`, *optional*):
|
656 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
657 |
+
instead.
|
658 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
659 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
660 |
+
used in both text-encoders
|
661 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
662 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
663 |
+
Anything below 512 pixels won't work well for
|
664 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
665 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
666 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
667 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
668 |
+
Anything below 512 pixels won't work well for
|
669 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
670 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
671 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
672 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
673 |
+
expense of slower inference.
|
674 |
+
denoising_end (`float`, *optional*):
|
675 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
676 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
677 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
678 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
679 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
680 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
681 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
682 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
683 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
684 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
685 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
686 |
+
usually at the expense of lower image quality.
|
687 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
688 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
689 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
690 |
+
less than `1`).
|
691 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
692 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
693 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
694 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
695 |
+
The number of images to generate per prompt.
|
696 |
+
eta (`float`, *optional*, defaults to 0.0):
|
697 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
698 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
699 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
700 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
701 |
+
to make generation deterministic.
|
702 |
+
latents (`torch.FloatTensor`, *optional*):
|
703 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
704 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
705 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
706 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
707 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
708 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
709 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
710 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
711 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
712 |
+
argument.
|
713 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
714 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
715 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
716 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
717 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
718 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
719 |
+
input argument.
|
720 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
721 |
+
The output format of the generate image. Choose between
|
722 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
723 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
724 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.MyPipelineOutput`] instead
|
725 |
+
of a plain tuple.
|
726 |
+
callback (`Callable`, *optional*):
|
727 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
728 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
729 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
730 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
731 |
+
called at every step.
|
732 |
+
cross_attention_kwargs (`dict`, *optional*):
|
733 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
734 |
+
`self.processor` in
|
735 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
736 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
737 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
738 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
739 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
740 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
741 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
742 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
743 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
744 |
+
explained in section 2.2 of
|
745 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
746 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
747 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
748 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
749 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
750 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
751 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
752 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
753 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
754 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
755 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
756 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
757 |
+
micro-conditioning as explained in section 2.2 of
|
758 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
759 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
760 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
761 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
762 |
+
micro-conditioning as explained in section 2.2 of
|
763 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
764 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
765 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
766 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
767 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
768 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
769 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
770 |
+
|
771 |
+
Examples:
|
772 |
+
|
773 |
+
Returns:
|
774 |
+
[`~pipelines.stable_diffusion_xl.MyPipelineOutput`] or `tuple`:
|
775 |
+
[`~pipelines.stable_diffusion_xl.MyPipelineOutput`] if `return_dict` is True, otherwise a
|
776 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
777 |
+
"""
|
778 |
+
# 0. Default height and width to unet
|
779 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
780 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
781 |
+
|
782 |
+
original_size = original_size or (height, width)
|
783 |
+
target_size = target_size or (height, width)
|
784 |
+
|
785 |
+
# 1. Check inputs. Raise error if not correct
|
786 |
+
self.check_inputs(
|
787 |
+
prompt,
|
788 |
+
prompt_2,
|
789 |
+
height,
|
790 |
+
width,
|
791 |
+
callback_steps,
|
792 |
+
negative_prompt,
|
793 |
+
negative_prompt_2,
|
794 |
+
prompt_embeds,
|
795 |
+
negative_prompt_embeds,
|
796 |
+
pooled_prompt_embeds,
|
797 |
+
negative_pooled_prompt_embeds,
|
798 |
+
)
|
799 |
+
|
800 |
+
# 2. Define call parameters
|
801 |
+
if prompt is not None and isinstance(prompt, str):
|
802 |
+
batch_size = 1
|
803 |
+
elif prompt is not None and isinstance(prompt, list):
|
804 |
+
batch_size = len(prompt)
|
805 |
+
else:
|
806 |
+
batch_size = prompt_embeds.shape[0]
|
807 |
+
|
808 |
+
device = self._execution_device
|
809 |
+
|
810 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
811 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
812 |
+
# corresponds to doing no classifier free guidance.
|
813 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
814 |
+
|
815 |
+
# 3. Encode input prompt
|
816 |
+
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
817 |
+
|
818 |
+
(
|
819 |
+
prompt_embeds,
|
820 |
+
negative_prompt_embeds,
|
821 |
+
pooled_prompt_embeds,
|
822 |
+
negative_pooled_prompt_embeds,
|
823 |
+
) = self.encode_prompt(
|
824 |
+
prompt=prompt,
|
825 |
+
prompt_2=prompt_2,
|
826 |
+
device=device,
|
827 |
+
num_images_per_prompt=num_images_per_prompt,
|
828 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
829 |
+
negative_prompt=negative_prompt,
|
830 |
+
negative_prompt_2=negative_prompt_2,
|
831 |
+
prompt_embeds=prompt_embeds,
|
832 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
833 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
834 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
835 |
+
lora_scale=lora_scale,
|
836 |
+
clip_skip=clip_skip,
|
837 |
+
)
|
838 |
+
|
839 |
+
# 4. Prepare timesteps
|
840 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
841 |
+
|
842 |
+
timesteps = self.scheduler.timesteps
|
843 |
+
|
844 |
+
# 5. Prepare latent variables
|
845 |
+
num_channels_latents = self.unet.config.in_channels
|
846 |
+
latents = self.prepare_latents(
|
847 |
+
batch_size * num_images_per_prompt,
|
848 |
+
num_channels_latents,
|
849 |
+
height,
|
850 |
+
width,
|
851 |
+
prompt_embeds.dtype,
|
852 |
+
device,
|
853 |
+
generator,
|
854 |
+
latents,
|
855 |
+
)
|
856 |
+
|
857 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
858 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
859 |
+
|
860 |
+
# 7. Prepare added time ids & embeddings
|
861 |
+
add_text_embeds = pooled_prompt_embeds
|
862 |
+
if self.text_encoder_2 is None:
|
863 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
864 |
+
else:
|
865 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
866 |
+
|
867 |
+
add_time_ids = self._get_add_time_ids(
|
868 |
+
original_size,
|
869 |
+
crops_coords_top_left,
|
870 |
+
target_size,
|
871 |
+
dtype=prompt_embeds.dtype,
|
872 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
873 |
+
)
|
874 |
+
if negative_original_size is not None and negative_target_size is not None:
|
875 |
+
negative_add_time_ids = self._get_add_time_ids(
|
876 |
+
negative_original_size,
|
877 |
+
negative_crops_coords_top_left,
|
878 |
+
negative_target_size,
|
879 |
+
dtype=prompt_embeds.dtype,
|
880 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
negative_add_time_ids = add_time_ids
|
884 |
+
|
885 |
+
if do_classifier_free_guidance:
|
886 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
887 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
888 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
889 |
+
|
890 |
+
prompt_embeds = prompt_embeds.to(device)
|
891 |
+
add_text_embeds = add_text_embeds.to(device)
|
892 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
893 |
+
|
894 |
+
# 8. Denoising loop
|
895 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
896 |
+
|
897 |
+
# 8.1 Apply denoising_end
|
898 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
899 |
+
discrete_timestep_cutoff = int(
|
900 |
+
round(
|
901 |
+
self.scheduler.config.num_train_timesteps
|
902 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
903 |
+
)
|
904 |
+
)
|
905 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
906 |
+
timesteps = timesteps[:num_inference_steps]
|
907 |
+
|
908 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
909 |
+
for i, t in enumerate(timesteps):
|
910 |
+
# expand the latents if we are doing classifier free guidance
|
911 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
912 |
+
|
913 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
914 |
+
|
915 |
+
# predict the noise residual
|
916 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
917 |
+
noise_pred = self.unet(
|
918 |
+
latent_model_input,
|
919 |
+
t,
|
920 |
+
encoder_hidden_states=prompt_embeds,
|
921 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
922 |
+
added_cond_kwargs=added_cond_kwargs,
|
923 |
+
return_dict=False,
|
924 |
+
)[0]
|
925 |
+
|
926 |
+
# perform guidance
|
927 |
+
if do_classifier_free_guidance:
|
928 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
929 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
930 |
+
|
931 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
932 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
933 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
934 |
+
|
935 |
+
# compute the previous noisy sample x_t -> x_t-1
|
936 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
937 |
+
|
938 |
+
# call the callback, if provided
|
939 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
940 |
+
progress_bar.update()
|
941 |
+
if callback is not None and i % callback_steps == 0:
|
942 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
943 |
+
callback(step_idx, t, latents)
|
944 |
+
|
945 |
+
if XLA_AVAILABLE:
|
946 |
+
xm.mark_step()
|
947 |
+
|
948 |
+
if not output_type == "latent":
|
949 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
950 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
951 |
+
|
952 |
+
if needs_upcasting:
|
953 |
+
self.upcast_vae()
|
954 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
955 |
+
|
956 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
957 |
+
|
958 |
+
# cast back to fp16 if needed
|
959 |
+
if needs_upcasting:
|
960 |
+
self.vae.to(dtype=torch.float16)
|
961 |
+
else:
|
962 |
+
image = latents
|
963 |
+
|
964 |
+
if not output_type == "latent":
|
965 |
+
# apply watermark if available
|
966 |
+
if self.watermark is not None:
|
967 |
+
image = self.watermark.apply_watermark(image)
|
968 |
+
|
969 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
970 |
+
|
971 |
+
# Offload all models
|
972 |
+
self.maybe_free_model_hooks()
|
973 |
+
|
974 |
+
return (image,)
|
scheduler/my_scheduler.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.utils import BaseOutput
|
26 |
+
from diffusers.utils.torch_utils import randn_tensor
|
27 |
+
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class MySchedulerOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
Output class for the scheduler's `step` function output.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38 |
+
denoising loop.
|
39 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
41 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
42 |
+
"""
|
43 |
+
|
44 |
+
prev_sample: torch.FloatTensor
|
45 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
46 |
+
|
47 |
+
|
48 |
+
def betas_for_alpha_bar(
|
49 |
+
num_diffusion_timesteps,
|
50 |
+
max_beta=0.999,
|
51 |
+
alpha_transform_type="cosine",
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
55 |
+
(1-beta) over time from t = [0,1].
|
56 |
+
|
57 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
58 |
+
to that part of the diffusion process.
|
59 |
+
|
60 |
+
|
61 |
+
Args:
|
62 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
63 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
64 |
+
prevent singularities.
|
65 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
66 |
+
Choose from `cosine` or `exp`
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
70 |
+
"""
|
71 |
+
if alpha_transform_type == "cosine":
|
72 |
+
|
73 |
+
def alpha_bar_fn(t):
|
74 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
75 |
+
|
76 |
+
elif alpha_transform_type == "exp":
|
77 |
+
|
78 |
+
def alpha_bar_fn(t):
|
79 |
+
return math.exp(t * -12.0)
|
80 |
+
|
81 |
+
else:
|
82 |
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
83 |
+
|
84 |
+
betas = []
|
85 |
+
for i in range(num_diffusion_timesteps):
|
86 |
+
t1 = i / num_diffusion_timesteps
|
87 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
88 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
89 |
+
return torch.tensor(betas, dtype=torch.float32)
|
90 |
+
|
91 |
+
|
92 |
+
class MyScheduler(SchedulerMixin, ConfigMixin):
|
93 |
+
"""
|
94 |
+
`MyScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
|
95 |
+
|
96 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
97 |
+
methods the library implements for all schedulers such as loading and saving.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
num_train_timesteps (`int`, defaults to 1000):
|
101 |
+
The number of diffusion steps to train the model.
|
102 |
+
beta_start (`float`, defaults to 0.0001):
|
103 |
+
The starting `beta` value of inference.
|
104 |
+
beta_end (`float`, defaults to 0.02):
|
105 |
+
The final `beta` value.
|
106 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
107 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
108 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
109 |
+
variance_type (`str`, defaults to `"fixed_small"`):
|
110 |
+
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
|
111 |
+
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
|
112 |
+
clip_sample (`bool`, defaults to `True`):
|
113 |
+
Clip the predicted sample for numerical stability.
|
114 |
+
clip_sample_range (`float`, defaults to 1.0):
|
115 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
116 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
117 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
118 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
119 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
120 |
+
thresholding (`bool`, defaults to `False`):
|
121 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
122 |
+
as Stable Diffusion.
|
123 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
124 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
125 |
+
sample_max_value (`float`, defaults to 1.0):
|
126 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
127 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
128 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
129 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
130 |
+
steps_offset (`int`, defaults to 0):
|
131 |
+
An offset added to the inference steps. You can use a combination of `offset=1` and
|
132 |
+
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
133 |
+
Diffusion.
|
134 |
+
"""
|
135 |
+
|
136 |
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
137 |
+
order = 1
|
138 |
+
|
139 |
+
@register_to_config
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
num_train_timesteps: int = 1000,
|
143 |
+
beta_start: float = 0.0001,
|
144 |
+
beta_end: float = 0.02,
|
145 |
+
beta_schedule: str = "linear",
|
146 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
147 |
+
variance_type: str = "fixed_small",
|
148 |
+
clip_sample: bool = True,
|
149 |
+
prediction_type: str = "epsilon",
|
150 |
+
thresholding: bool = False,
|
151 |
+
dynamic_thresholding_ratio: float = 0.995,
|
152 |
+
clip_sample_range: float = 1.0,
|
153 |
+
sample_max_value: float = 1.0,
|
154 |
+
timestep_spacing: str = "leading",
|
155 |
+
steps_offset: int = 0,
|
156 |
+
):
|
157 |
+
if trained_betas is not None:
|
158 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
159 |
+
elif beta_schedule == "linear":
|
160 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
161 |
+
elif beta_schedule == "scaled_linear":
|
162 |
+
# this schedule is very specific to the latent diffusion model.
|
163 |
+
self.betas = (
|
164 |
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
165 |
+
)
|
166 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
167 |
+
# Glide cosine schedule
|
168 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
169 |
+
elif beta_schedule == "sigmoid":
|
170 |
+
# GeoDiff sigmoid schedule
|
171 |
+
betas = torch.linspace(-6, 6, num_train_timesteps)
|
172 |
+
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
173 |
+
else:
|
174 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
175 |
+
|
176 |
+
self.alphas = 1.0 - self.betas
|
177 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
178 |
+
self.one = torch.tensor(1.0)
|
179 |
+
|
180 |
+
# standard deviation of the initial noise distribution
|
181 |
+
self.init_noise_sigma = 1.0
|
182 |
+
|
183 |
+
# setable values
|
184 |
+
self.custom_timesteps = False
|
185 |
+
self.num_inference_steps = None
|
186 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
|
187 |
+
|
188 |
+
self.variance_type = variance_type
|
189 |
+
|
190 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
191 |
+
"""
|
192 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
193 |
+
current timestep.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
sample (`torch.FloatTensor`):
|
197 |
+
The input sample.
|
198 |
+
timestep (`int`, *optional*):
|
199 |
+
The current timestep in the diffusion chain.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
`torch.FloatTensor`:
|
203 |
+
A scaled input sample.
|
204 |
+
"""
|
205 |
+
return sample
|
206 |
+
|
207 |
+
def set_timesteps(
|
208 |
+
self,
|
209 |
+
num_inference_steps: Optional[int] = None,
|
210 |
+
device: Union[str, torch.device] = None,
|
211 |
+
timesteps: Optional[List[int]] = None,
|
212 |
+
):
|
213 |
+
"""
|
214 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
215 |
+
|
216 |
+
Args:
|
217 |
+
num_inference_steps (`int`):
|
218 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
219 |
+
`timesteps` must be `None`.
|
220 |
+
device (`str` or `torch.device`, *optional*):
|
221 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
222 |
+
timesteps (`List[int]`, *optional*):
|
223 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
224 |
+
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
|
225 |
+
`num_inference_steps` must be `None`.
|
226 |
+
|
227 |
+
"""
|
228 |
+
if num_inference_steps is not None and timesteps is not None:
|
229 |
+
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
|
230 |
+
|
231 |
+
if timesteps is not None:
|
232 |
+
for i in range(1, len(timesteps)):
|
233 |
+
if timesteps[i] >= timesteps[i - 1]:
|
234 |
+
raise ValueError("`custom_timesteps` must be in descending order.")
|
235 |
+
|
236 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
237 |
+
raise ValueError(
|
238 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
239 |
+
f" {self.config.num_train_timesteps}."
|
240 |
+
)
|
241 |
+
|
242 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
243 |
+
self.custom_timesteps = True
|
244 |
+
else:
|
245 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
246 |
+
raise ValueError(
|
247 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
248 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
249 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
250 |
+
)
|
251 |
+
|
252 |
+
self.num_inference_steps = num_inference_steps
|
253 |
+
self.custom_timesteps = False
|
254 |
+
|
255 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
256 |
+
if self.config.timestep_spacing == "linspace":
|
257 |
+
timesteps = (
|
258 |
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
259 |
+
.round()[::-1]
|
260 |
+
.copy()
|
261 |
+
.astype(np.int64)
|
262 |
+
)
|
263 |
+
elif self.config.timestep_spacing == "leading":
|
264 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
265 |
+
# creates integer timesteps by multiplying by ratio
|
266 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
267 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
268 |
+
timesteps += self.config.steps_offset
|
269 |
+
elif self.config.timestep_spacing == "trailing":
|
270 |
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
271 |
+
# creates integer timesteps by multiplying by ratio
|
272 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
273 |
+
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
274 |
+
timesteps -= 1
|
275 |
+
else:
|
276 |
+
raise ValueError(
|
277 |
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
278 |
+
)
|
279 |
+
|
280 |
+
self.timesteps = torch.from_numpy(timesteps).to(device)
|
281 |
+
|
282 |
+
def _get_variance(self, t, predicted_variance=None, variance_type=None):
|
283 |
+
prev_t = self.previous_timestep(t)
|
284 |
+
|
285 |
+
alpha_prod_t = self.alphas_cumprod[t]
|
286 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
287 |
+
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
|
288 |
+
|
289 |
+
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
|
290 |
+
# and sample from it to get previous sample
|
291 |
+
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
|
292 |
+
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
|
293 |
+
|
294 |
+
# we always take the log of variance, so clamp it to ensure it's not 0
|
295 |
+
variance = torch.clamp(variance, min=1e-20)
|
296 |
+
|
297 |
+
if variance_type is None:
|
298 |
+
variance_type = self.config.variance_type
|
299 |
+
|
300 |
+
# hacks - were probably added for training stability
|
301 |
+
if variance_type == "fixed_small":
|
302 |
+
variance = variance
|
303 |
+
# for rl-diffuser https://arxiv.org/abs/2205.09991
|
304 |
+
elif variance_type == "fixed_small_log":
|
305 |
+
variance = torch.log(variance)
|
306 |
+
variance = torch.exp(0.5 * variance)
|
307 |
+
elif variance_type == "fixed_large":
|
308 |
+
variance = current_beta_t
|
309 |
+
elif variance_type == "fixed_large_log":
|
310 |
+
# Glide max_log
|
311 |
+
variance = torch.log(current_beta_t)
|
312 |
+
elif variance_type == "learned":
|
313 |
+
return predicted_variance
|
314 |
+
elif variance_type == "learned_range":
|
315 |
+
min_log = torch.log(variance)
|
316 |
+
max_log = torch.log(current_beta_t)
|
317 |
+
frac = (predicted_variance + 1) / 2
|
318 |
+
variance = frac * max_log + (1 - frac) * min_log
|
319 |
+
|
320 |
+
return variance
|
321 |
+
|
322 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
323 |
+
"""
|
324 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
325 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
326 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
327 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
328 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
329 |
+
|
330 |
+
https://arxiv.org/abs/2205.11487
|
331 |
+
"""
|
332 |
+
dtype = sample.dtype
|
333 |
+
batch_size, channels, *remaining_dims = sample.shape
|
334 |
+
|
335 |
+
if dtype not in (torch.float32, torch.float64):
|
336 |
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
337 |
+
|
338 |
+
# Flatten sample for doing quantile calculation along each image
|
339 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
340 |
+
|
341 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
342 |
+
|
343 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
344 |
+
s = torch.clamp(
|
345 |
+
s, min=1, max=self.config.sample_max_value
|
346 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
347 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
348 |
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
349 |
+
|
350 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
351 |
+
sample = sample.to(dtype)
|
352 |
+
|
353 |
+
return sample
|
354 |
+
|
355 |
+
def step(
|
356 |
+
self,
|
357 |
+
model_output: torch.FloatTensor,
|
358 |
+
timestep: int,
|
359 |
+
sample: torch.FloatTensor,
|
360 |
+
generator=None,
|
361 |
+
return_dict: bool = True,
|
362 |
+
) -> Union[MySchedulerOutput, Tuple]:
|
363 |
+
"""
|
364 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
365 |
+
process from the learned model outputs (most often the predicted noise).
|
366 |
+
|
367 |
+
Args:
|
368 |
+
model_output (`torch.FloatTensor`):
|
369 |
+
The direct output from learned diffusion model.
|
370 |
+
timestep (`float`):
|
371 |
+
The current discrete timestep in the diffusion chain.
|
372 |
+
sample (`torch.FloatTensor`):
|
373 |
+
A current instance of a sample created by the diffusion process.
|
374 |
+
generator (`torch.Generator`, *optional*):
|
375 |
+
A random number generator.
|
376 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
377 |
+
Whether or not to return a [`~schedulers.scheduling_ddpm.MySchedulerOutput`] or `tuple`.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
[`~schedulers.scheduling_ddpm.MySchedulerOutput`] or `tuple`:
|
381 |
+
If return_dict is `True`, [`~schedulers.scheduling_ddpm.MySchedulerOutput`] is returned, otherwise a
|
382 |
+
tuple is returned where the first element is the sample tensor.
|
383 |
+
|
384 |
+
"""
|
385 |
+
t = timestep
|
386 |
+
|
387 |
+
prev_t = self.previous_timestep(t)
|
388 |
+
|
389 |
+
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
390 |
+
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
391 |
+
else:
|
392 |
+
predicted_variance = None
|
393 |
+
|
394 |
+
# 1. compute alphas, betas
|
395 |
+
alpha_prod_t = self.alphas_cumprod[t]
|
396 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
397 |
+
beta_prod_t = 1 - alpha_prod_t
|
398 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
399 |
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
400 |
+
current_beta_t = 1 - current_alpha_t
|
401 |
+
|
402 |
+
# 2. compute predicted original sample from predicted noise also called
|
403 |
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
404 |
+
if self.config.prediction_type == "epsilon":
|
405 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
406 |
+
elif self.config.prediction_type == "sample":
|
407 |
+
pred_original_sample = model_output
|
408 |
+
elif self.config.prediction_type == "v_prediction":
|
409 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
410 |
+
else:
|
411 |
+
raise ValueError(
|
412 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
413 |
+
" `v_prediction` for the MyScheduler."
|
414 |
+
)
|
415 |
+
|
416 |
+
# 3. Clip or threshold "predicted x_0"
|
417 |
+
if self.config.thresholding:
|
418 |
+
pred_original_sample = self._threshold_sample(pred_original_sample)
|
419 |
+
elif self.config.clip_sample:
|
420 |
+
pred_original_sample = pred_original_sample.clamp(
|
421 |
+
-self.config.clip_sample_range, self.config.clip_sample_range
|
422 |
+
)
|
423 |
+
|
424 |
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
425 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
426 |
+
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
|
427 |
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
428 |
+
|
429 |
+
# 5. Compute predicted previous sample µ_t
|
430 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
431 |
+
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
432 |
+
|
433 |
+
# 6. Add noise
|
434 |
+
variance = 0
|
435 |
+
if t > 0:
|
436 |
+
device = model_output.device
|
437 |
+
variance_noise = randn_tensor(
|
438 |
+
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
439 |
+
)
|
440 |
+
if self.variance_type == "fixed_small_log":
|
441 |
+
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
|
442 |
+
elif self.variance_type == "learned_range":
|
443 |
+
variance = self._get_variance(t, predicted_variance=predicted_variance)
|
444 |
+
variance = torch.exp(0.5 * variance) * variance_noise
|
445 |
+
else:
|
446 |
+
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
|
447 |
+
|
448 |
+
pred_prev_sample = pred_prev_sample + variance
|
449 |
+
|
450 |
+
if not return_dict:
|
451 |
+
return (pred_prev_sample,)
|
452 |
+
|
453 |
+
return MySchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
454 |
+
|
455 |
+
def add_noise(
|
456 |
+
self,
|
457 |
+
original_samples: torch.FloatTensor,
|
458 |
+
noise: torch.FloatTensor,
|
459 |
+
timesteps: torch.IntTensor,
|
460 |
+
) -> torch.FloatTensor:
|
461 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
462 |
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
463 |
+
timesteps = timesteps.to(original_samples.device)
|
464 |
+
|
465 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
466 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
467 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
468 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
469 |
+
|
470 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
471 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
472 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
473 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
474 |
+
|
475 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
476 |
+
return noisy_samples
|
477 |
+
|
478 |
+
def get_velocity(
|
479 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
480 |
+
) -> torch.FloatTensor:
|
481 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
482 |
+
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
483 |
+
timesteps = timesteps.to(sample.device)
|
484 |
+
|
485 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
486 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
487 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
488 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
489 |
+
|
490 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
491 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
492 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
493 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
494 |
+
|
495 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
496 |
+
return velocity
|
497 |
+
|
498 |
+
def __len__(self):
|
499 |
+
return self.config.num_train_timesteps
|
500 |
+
|
501 |
+
def previous_timestep(self, timestep):
|
502 |
+
if self.custom_timesteps:
|
503 |
+
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
504 |
+
if index == self.timesteps.shape[0] - 1:
|
505 |
+
prev_t = torch.tensor(-1)
|
506 |
+
else:
|
507 |
+
prev_t = self.timesteps[index + 1]
|
508 |
+
else:
|
509 |
+
num_inference_steps = (
|
510 |
+
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
511 |
+
)
|
512 |
+
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
513 |
+
|
514 |
+
return prev_t
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "EulerDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"interpolation_type": "linear",
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "epsilon",
|
10 |
+
"steps_offset": 1,
|
11 |
+
"timestep_spacing": "leading",
|
12 |
+
"trained_betas": null,
|
13 |
+
"use_karras_sigmas": false
|
14 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 32,
|
10 |
+
"initializer_factor": 1.0,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 37,
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"max_position_embeddings": 77,
|
15 |
+
"model_type": "clip_text_model",
|
16 |
+
"num_attention_heads": 4,
|
17 |
+
"num_hidden_layers": 5,
|
18 |
+
"pad_token_id": 1,
|
19 |
+
"projection_dim": 32,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.30.2",
|
22 |
+
"vocab_size": 1000
|
23 |
+
}
|
text_encoder/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0f56336d7bb3ca2c416bb9d74d452c67d9443609084e712e59e57de96dac918
|
3 |
+
size 276381
|
text_encoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dca7ac73495ecfc94f5840e567a33958390faa352296eef7b5cd72f3a7661f83
|
3 |
+
size 426918
|
text_encoder/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc33d238032a59513693649443a7a7cee4767e614275dd73584b22b608b5d8f1
|
3 |
+
size 268300
|
text_encoder/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8db031dc7a69f514ab2b725e1653abb62f13146b92fd9a1c0a6258b63a4d71eb
|
3 |
+
size 301680
|
text_encoder_2/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModelWithProjection"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 32,
|
10 |
+
"initializer_factor": 1.0,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 37,
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"max_position_embeddings": 77,
|
15 |
+
"model_type": "clip_text_model",
|
16 |
+
"num_attention_heads": 4,
|
17 |
+
"num_hidden_layers": 5,
|
18 |
+
"pad_token_id": 1,
|
19 |
+
"projection_dim": 32,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.30.2",
|
22 |
+
"vocab_size": 1000
|
23 |
+
}
|
text_encoder_2/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b99248c7d146aac446d888daa22351a30ee7c60ca4b4a02f5dc04b9a1694d160
|
3 |
+
size 280520
|
text_encoder_2/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00e31e9d12a7527fcdd90c94333c4ddf50cecc6efc4cbea8691f1c21d6c45663
|
3 |
+
size 431174
|
text_encoder_2/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c89c490e82f3bd6ca2a7cc1951846bf4ce961e442d030d1563070cb280b6e4f
|
3 |
+
size 272396
|
text_encoder_2/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
text_encoder_2/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21086f503ac508b05ea74abf51b676c1b99c6f9c23c28f7aecc71cdd138dc385
|
3 |
+
size 306099
|
tokenizer/merges.txt
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#version: 0.2
|
2 |
+
Ġ t
|
3 |
+
Ġt h
|
4 |
+
Ġ a
|
5 |
+
Ġth e</w>
|
6 |
+
i n
|
7 |
+
Ġ o
|
8 |
+
Ġ ,</w>
|
9 |
+
Ġ s
|
10 |
+
e d</w>
|
11 |
+
Ġ w
|
12 |
+
e r
|
13 |
+
Ġ .</w>
|
14 |
+
Ġ i
|
15 |
+
r e
|
16 |
+
Ġ c
|
17 |
+
n d</w>
|
18 |
+
Ġ f
|
19 |
+
Ġ b
|
20 |
+
a t
|
21 |
+
Ġo f</w>
|
22 |
+
e r</w>
|
23 |
+
e n
|
24 |
+
a r
|
25 |
+
o r
|
26 |
+
i t
|
27 |
+
Ġ p
|
28 |
+
Ġ h
|
29 |
+
Ġa nd</w>
|
30 |
+
o n
|
31 |
+
in g</w>
|
32 |
+
a n
|
33 |
+
r o
|
34 |
+
Ġ m
|
35 |
+
Ġ d
|
36 |
+
e s</w>
|
37 |
+
Ġi n</w>
|
38 |
+
o n</w>
|
39 |
+
Ġt o</w>
|
40 |
+
o u
|
41 |
+
i s
|
42 |
+
Ġ a</w>
|
43 |
+
i c
|
44 |
+
Ġ T
|
45 |
+
a l
|
46 |
+
Ġ l
|
47 |
+
Ġ =</w>
|
48 |
+
Ġ re
|
49 |
+
Ġ "</w>
|
50 |
+
e s
|
51 |
+
Ġ S
|
52 |
+
a s</w>
|
53 |
+
a l</w>
|
54 |
+
i l
|
55 |
+
e l
|
56 |
+
i on</w>
|
57 |
+
Ġ A
|
58 |
+
Ġ C
|
59 |
+
Ġ 1
|
60 |
+
Ġ Ċ</w>
|
61 |
+
u r
|
62 |
+
ĠT h
|
63 |
+
Ġ n
|
64 |
+
a s
|
65 |
+
Ġ @
|
66 |
+
e c
|
67 |
+
o m
|
68 |
+
a c
|
69 |
+
Ġ e
|
70 |
+
Ġw as</w>
|
71 |
+
Ġ M
|
72 |
+
o r</w>
|
73 |
+
a n</w>
|
74 |
+
a m
|
75 |
+
e n</w>
|
76 |
+
o l
|
77 |
+
Ġ in
|
78 |
+
Ġ g
|
79 |
+
Ġ '</w>
|
80 |
+
Ġ B
|
81 |
+
l y</w>
|
82 |
+
a t</w>
|
83 |
+
i v
|
84 |
+
t s</w>
|
85 |
+
ĠTh e</w>
|
86 |
+
u s
|
87 |
+
- @</w>
|
88 |
+
Ġ@ -@</w>
|
89 |
+
i s</w>
|
90 |
+
Ġ I
|
91 |
+
Ġw h
|
92 |
+
i g
|
93 |
+
Ġ H
|
94 |
+
Ġs t
|
95 |
+
o s
|
96 |
+
u n
|
97 |
+
t h
|
98 |
+
Ġ P
|
99 |
+
Ġw it
|
100 |
+
Ġth at</w>
|
101 |
+
i r
|
102 |
+
Ġa s</w>
|
103 |
+
e m
|
104 |
+
Ġo n</w>
|
105 |
+
r a
|
106 |
+
Ġf or</w>
|
107 |
+
Ġ R
|
108 |
+
e t
|
109 |
+
o w
|
110 |
+
Ġ 2
|
111 |
+
i d
|
112 |
+
Ġ D
|
113 |
+
l e</w>
|
114 |
+
Ġwit h</w>
|
115 |
+
l a
|
116 |
+
en t</w>
|
117 |
+
i m
|
118 |
+
Ġ F
|
119 |
+
e a
|
120 |
+
i on
|
121 |
+
Ġb y</w>
|
122 |
+
Ġ )</w>
|
123 |
+
Ġ (</w>
|
124 |
+
Ġa l
|
125 |
+
Ġc on
|
126 |
+
en t
|
127 |
+
Ġ W
|
128 |
+
Ġi s</w>
|
129 |
+
er e</w>
|
130 |
+
Ġ G
|
131 |
+
Ġ N
|
132 |
+
Ġ L
|
133 |
+
Ġh a
|
134 |
+
er s</w>
|
135 |
+
r i
|
136 |
+
t h</w>
|
137 |
+
t ed</w>
|
138 |
+
u c
|
139 |
+
Ġ J
|
140 |
+
Ġ1 9
|
141 |
+
e v
|
142 |
+
u l
|
143 |
+
Ġ v
|
144 |
+
c e</w>
|
145 |
+
at ion</w>
|
146 |
+
ro m</w>
|
147 |
+
Ġb e
|
148 |
+
Ġ E
|
149 |
+
i n</w>
|
150 |
+
Ġth e
|
151 |
+
Ġf rom</w>
|
152 |
+
Ġ O
|
153 |
+
t er</w>
|
154 |
+
Ġp ro
|
155 |
+
Ġa r
|
156 |
+
a d
|
157 |
+
Ġc om
|
158 |
+
i c</w>
|
159 |
+
a g
|
160 |
+
Ġh is</w>
|
161 |
+
Ġs h
|
162 |
+
Ġa t</w>
|
163 |
+
o v
|
164 |
+
i es</w>
|
165 |
+
o o
|
166 |
+
p p
|
167 |
+
s t
|
168 |
+
c h
|
169 |
+
Ġ r
|
170 |
+
Ġ2 0
|
171 |
+
a y</w>
|
172 |
+
i f
|
173 |
+
Ġw ere</w>
|
174 |
+
Ġc h
|
175 |
+
u t</w>
|
176 |
+
s t</w>
|
177 |
+
u t
|
178 |
+
d s</w>
|
179 |
+
o p
|
180 |
+
u m
|
181 |
+
Ġi t</w>
|
182 |
+
o c
|
183 |
+
t er
|
184 |
+
l e
|
185 |
+
ig h
|
186 |
+
u d
|
187 |
+
Ġe x
|
188 |
+
ion s</w>
|
189 |
+
at e</w>
|
190 |
+
it y</w>
|
191 |
+
at ed</w>
|
192 |
+
Ġ un
|
193 |
+
e p
|
194 |
+
q u
|
195 |
+
Ġn o
|
196 |
+
Ġ K
|
197 |
+
iv e</w>
|
198 |
+
is t
|
199 |
+
Ġo n
|
200 |
+
am e</w>
|
201 |
+
ou n
|
202 |
+
i r</w>
|
203 |
+
a b
|
204 |
+
Ġ â
|
205 |
+
in g
|
206 |
+
Ġh e</w>
|
207 |
+
l d</w>
|
208 |
+
u g
|
209 |
+
ic h</w>
|
210 |
+
Ġa n</w>
|
211 |
+
e d
|
212 |
+
Ġ k
|
213 |
+
Ġâ Ģ
|
214 |
+
Ġha d</w>
|
215 |
+
v e</w>
|
216 |
+
a in
|
217 |
+
Ġs e
|
218 |
+
t ion</w>
|
219 |
+
or e</w>
|
220 |
+
re s
|
221 |
+
Ġwh ich</w>
|
222 |
+
ĠI n</w>
|
223 |
+
o d
|
224 |
+
th er</w>
|
225 |
+
a k
|
226 |
+
Ġs p
|
227 |
+
a r</w>
|
228 |
+
Ġ y
|
229 |
+
ĠC h
|
230 |
+
on g</w>
|
231 |
+
Ġa c
|
232 |
+
es t</w>
|
233 |
+
Ġ U
|
234 |
+
a p
|
235 |
+
f f
|
236 |
+
al ly</w>
|
237 |
+
r it
|
238 |
+
ĠS t
|
239 |
+
u b
|
240 |
+
g e</w>
|
241 |
+
b er</w>
|
242 |
+
e t</w>
|
243 |
+
Ġb e</w>
|
244 |
+
e ar
|
245 |
+
Ġre c
|
246 |
+
er s
|
247 |
+
Ġf ir
|
248 |
+
o t
|
249 |
+
Ġar e</w>
|
250 |
+
Ġa n
|
251 |
+
c h</w>
|
252 |
+
o g
|
253 |
+
i a</w>
|
254 |
+
es t
|
255 |
+
in e</w>
|
256 |
+
il l
|
257 |
+
an d
|
258 |
+
e l</w>
|
259 |
+
ar y</w>
|
260 |
+
e w</w>
|
261 |
+
i d</w>
|
262 |
+
Ġf or
|
263 |
+
Ġ ;</w>
|
264 |
+
Ġcom p
|
265 |
+
Ġ V
|
266 |
+
Ġin c
|
267 |
+
t r
|
268 |
+
Ġ20 0
|
269 |
+
Ġthe ir</w>
|
270 |
+
u s</w>
|
271 |
+
Ġb ut</w>
|
272 |
+
r an
|
273 |
+
ic al</w>
|
274 |
+
Ġfir st</w>
|
275 |
+
Ġd e
|
276 |
+
Ġin t
|
277 |
+
Ġ ro
|
278 |
+
s o</w>
|
279 |
+
ĠâĢ ĵ</w>
|
280 |
+
Ġno t</w>
|
281 |
+
d ing</w>
|
282 |
+
f ter</w>
|
283 |
+
ur e</w>
|
284 |
+
Ġp ar
|
285 |
+
Ġ :</w>
|
286 |
+
i an</w>
|
287 |
+
Ġt w
|
288 |
+
ou ld</w>
|
289 |
+
Ġal so</w>
|
290 |
+
Ġi ts</w>
|
291 |
+
Ġw or
|
292 |
+
u m</w>
|
293 |
+
Ġo r</w>
|
294 |
+
os t</w>
|
295 |
+
0 0</w>
|
296 |
+
ou r
|
297 |
+
ar d</w>
|
298 |
+
Ġre s
|
299 |
+
m p
|
300 |
+
u e</w>
|
301 |
+
Ġa b
|
302 |
+
is h</w>
|
303 |
+
Ġcon t
|
304 |
+
Ġa d
|
305 |
+
ow n</w>
|
306 |
+
al l</w>
|
307 |
+
ou g
|
308 |
+
Ġh er</w>
|
309 |
+
as t</w>
|
310 |
+
Ġ en
|
311 |
+
om e</w>
|
312 |
+
al l
|
313 |
+
d ed</w>
|
314 |
+
o w</w>
|
315 |
+
Ġha ve</w>
|
316 |
+
Ġ us
|
317 |
+
ea r</w>
|
318 |
+
ac k</w>
|
319 |
+
d uc
|
320 |
+
i al</w>
|
321 |
+
s s
|
322 |
+
en ts</w>
|
323 |
+
a in</w>
|
324 |
+
t ing</w>
|
325 |
+
Ġon e</w>
|
326 |
+
es s
|
327 |
+
Ġh as</w>
|
328 |
+
igh t</w>
|
329 |
+
a v
|
330 |
+
Ġe v
|
331 |
+
ou t</w>
|
332 |
+
a y
|
333 |
+
en ce</w>
|
334 |
+
Ġbe en</w>
|
335 |
+
e w
|
336 |
+
Ġtw o</w>
|
337 |
+
Ġc l
|
338 |
+
d er</w>
|
339 |
+
im e</w>
|
340 |
+
k s</w>
|
341 |
+
es s</w>
|
342 |
+
is h
|
343 |
+
. @</w>
|
344 |
+
Ġ@ .@</w>
|
345 |
+
Ġp la
|
346 |
+
Ġp l
|
347 |
+
Ġo r
|
348 |
+
u p</w>
|
349 |
+
m ent</w>
|
350 |
+
ur ing</w>
|
351 |
+
ol l
|
352 |
+
ĠI n
|
353 |
+
Ġth is</w>
|
354 |
+
Ġb ec
|
355 |
+
Ġcom m
|
356 |
+
Ġd is
|
357 |
+
at er</w>
|
358 |
+
ag e</w>
|
359 |
+
Ġa pp
|
360 |
+
ou s</w>
|
361 |
+
e y</w>
|
362 |
+
i l</w>
|
363 |
+
p er
|
364 |
+
ĠA l
|
365 |
+
ion al</w>
|
366 |
+
l ud
|
367 |
+
el y</w>
|
368 |
+
t t
|
369 |
+
il e</w>
|
370 |
+
i z
|
371 |
+
Ġ j
|
372 |
+
Ġwh o</w>
|
373 |
+
Ġa g
|
374 |
+
i b
|
375 |
+
Ġthe y</w>
|
376 |
+
f or
|
377 |
+
Ġo v
|
378 |
+
at h
|
379 |
+
e g
|
380 |
+
Ġs c
|
381 |
+
i p
|
382 |
+
Ġ20 1
|
383 |
+
Ġ 3
|
384 |
+
Ġp er
|
385 |
+
or y</w>
|
386 |
+
Ġd es
|
387 |
+
id e</w>
|
388 |
+
Ġs er
|
389 |
+
s e</w>
|
390 |
+
ĠH e</w>
|
391 |
+
la nd</w>
|
392 |
+
at ions</w>
|
393 |
+
r ic
|
394 |
+
i t</w>
|
395 |
+
re s</w>
|
396 |
+
er ed</w>
|
397 |
+
Ġp re
|
398 |
+
ĠS h
|
399 |
+
an ce</w>
|
400 |
+
or t</w>
|
401 |
+
an t</w>
|
402 |
+
, @</w>
|
403 |
+
Ġ@ ,@</w>
|
404 |
+
el l</w>
|
405 |
+
Ġ Y
|
406 |
+
n ed</w>
|
407 |
+
el l
|
408 |
+
it e</w>
|
409 |
+
Ġinc lud
|
410 |
+
Ġre p
|
411 |
+
Ġa fter</w>
|
412 |
+
Ġs uc
|
413 |
+
re e</w>
|
414 |
+
an y</w>
|
415 |
+
i m</w>
|
416 |
+
or t
|
417 |
+
Ġ1 8
|
418 |
+
Ġs u
|
419 |
+
ad e</w>
|
420 |
+
ou r</w>
|
421 |
+
ĠU n
|
422 |
+
ĠI t</w>
|
423 |
+
i k
|
424 |
+
ĠM ar
|
425 |
+
em ber</w>
|
426 |
+
Ġ 1</w>
|
427 |
+
e en</w>
|
428 |
+
a nd</w>
|
429 |
+
Ġs ec
|
430 |
+
ic e</w>
|
431 |
+
Ġt ime</w>
|
432 |
+
ĠA n
|
433 |
+
Ġint o</w>
|
434 |
+
Ġf in
|
435 |
+
Ġo ther</w>
|
436 |
+
Ġa tt
|
437 |
+
il l</w>
|
438 |
+
re n
|
439 |
+
ac h
|
440 |
+
as s
|
441 |
+
er al</w>
|
442 |
+
es e</w>
|
443 |
+
s h
|
444 |
+
al s</w>
|
445 |
+
it ion</w>
|
446 |
+
oug h</w>
|
447 |
+
l es</w>
|
448 |
+
am p
|
449 |
+
Ġw ould</w>
|
450 |
+
Ġm ore</w>
|
451 |
+
ro ug
|
452 |
+
ri b
|
453 |
+
er y</w>
|
454 |
+
ac e</w>
|
455 |
+
Ġ A</w>
|
456 |
+
Ġpla y
|
457 |
+
it ed</w>
|
458 |
+
k ed</w>
|
459 |
+
is t</w>
|
460 |
+
i ed</w>
|
461 |
+
Ġ 2</w>
|
462 |
+
as ed</w>
|
463 |
+
ing s</w>
|
464 |
+
an g
|
465 |
+
a m</w>
|
466 |
+
i p</w>
|
467 |
+
Ġb o
|
468 |
+
ab le</w>
|
469 |
+
t y</w>
|
470 |
+
Ġch ar
|
471 |
+
Ġc ent
|
472 |
+
et w
|
473 |
+
at es</w>
|
474 |
+
ro p
|
475 |
+
Ġ I</w>
|
476 |
+
u nd</w>
|
477 |
+
ĠA m
|
478 |
+
c es</w>
|
479 |
+
o in
|
480 |
+
Ġin ter
|
481 |
+
u p
|
482 |
+
c t
|
483 |
+
on e</w>
|
484 |
+
Ġt ra
|
485 |
+
an t
|
486 |
+
ec t
|
487 |
+
Ġal l</w>
|
488 |
+
e f
|
489 |
+
Ġcon s
|
490 |
+
ub l
|
491 |
+
n ing</w>
|
492 |
+
an s</w>
|
493 |
+
Ġf e
|
494 |
+
us t</w>
|
495 |
+
Ġ 0
|
496 |
+
Ġre m
|
497 |
+
as e</w>
|
498 |
+
on g
|
499 |
+
Ġwh en</w>
|
500 |
+
e b
|
501 |
+
ĠW h
|
502 |
+
Ġe ar
|
503 |
+
ev er</w>
|
504 |
+
Ġov er</w>
|
505 |
+
Ġk n
|
506 |
+
a us
|
507 |
+
Ġp os
|
508 |
+
a d</w>
|
509 |
+
er m
|
510 |
+
Ġsh e</w>
|
511 |
+
Ġ ra
|
512 |
+
Ġd uring</w>
|
513 |
+
as on</w>
|
514 |
+
v i
|
515 |
+
Ġex p
|
516 |
+
Ġl ea
|
517 |
+
Ġ el
|
518 |
+
Ġ 4
|
519 |
+
Ġon ly</w>
|
520 |
+
o nd</w>
|
521 |
+
Ġd ec
|
522 |
+
Ġac c
|
523 |
+
Ġo ff
|
524 |
+
is s
|
525 |
+
Ġf l
|
526 |
+
ĠE n
|
527 |
+
o t</w>
|
528 |
+
en s
|
529 |
+
os e</w>
|
530 |
+
ak e</w>
|
531 |
+
o m</w>
|
532 |
+
Ġs ev
|
533 |
+
ac h</w>
|
534 |
+
etw een</w>
|
535 |
+
er n
|
536 |
+
Ġ 3</w>
|
537 |
+
Ġp r
|
538 |
+
Ġg ro
|
539 |
+
r uc
|
540 |
+
Ġd i
|
541 |
+
Ġ19 9
|
542 |
+
ĠA r
|
543 |
+
Ġg ame</w>
|
544 |
+
Ġh im</w>
|
545 |
+
oo k</w>
|
546 |
+
Ġ up</w>
|
547 |
+
Ġab out</w>
|
548 |
+
Ġre l
|
549 |
+
for m
|
550 |
+
Ġth ree</w>
|
551 |
+
at t
|
552 |
+
ĠC om
|
553 |
+
Ġs a
|
554 |
+
ear s</w>
|
555 |
+
Ġ 5
|
556 |
+
r y</w>
|
557 |
+
Ġi mp
|
558 |
+
Ġm ost</w>
|
559 |
+
f er
|
560 |
+
Ġp res
|
561 |
+
Ġf il
|
562 |
+
Ġb etween</w>
|
563 |
+
Ġbe g
|
564 |
+
p h
|
565 |
+
or s</w>
|
566 |
+
Ġth an</w>
|
567 |
+
Ġrec or
|
568 |
+
o b
|
569 |
+
er ic
|
570 |
+
at ing</w>
|
571 |
+
Ġth roug
|
572 |
+
k ing</w>
|
573 |
+
Ġo ut</w>
|
574 |
+
Ġn um
|
575 |
+
oo d</w>
|
576 |
+
oll ow
|
577 |
+
ac t
|
578 |
+
u il
|
579 |
+
Ġc re
|
580 |
+
ol og
|
581 |
+
at ional</w>
|
582 |
+
Ġpro duc
|
583 |
+
Ġwh ile</w>
|
584 |
+
Ġl ater</w>
|
585 |
+
Ġw rit
|
586 |
+
e x
|
587 |
+
Ġst ar
|
588 |
+
Ġsp ec
|
589 |
+
e e
|
590 |
+
ish ed</w>
|
591 |
+
Ġre g
|
592 |
+
is ion</w>
|
593 |
+
ou th</w>
|
594 |
+
Ġre le
|
595 |
+
Ġa ss
|
596 |
+
Ġse ason</w>
|
597 |
+
Ġm ade</w>
|
598 |
+
il y</w>
|
599 |
+
r u
|
600 |
+
o y
|
601 |
+
t ur
|
602 |
+
t e</w>
|
603 |
+
Ġ qu
|
604 |
+
Ġm ov
|
605 |
+
ur y</w>
|
606 |
+
ĠAm eric
|
607 |
+
em ent</w>
|
608 |
+
c c
|
609 |
+
ou nd</w>
|
610 |
+
Ġl ar
|
611 |
+
Ġfor m
|
612 |
+
ec t</w>
|
613 |
+
Ġde f
|
614 |
+
Ġm us
|
615 |
+
ĠP ar
|
616 |
+
Ġm e
|
617 |
+
Ġs ub
|
618 |
+
w ay</w>
|
619 |
+
o p</w>
|
620 |
+
o h
|
621 |
+
el d</w>
|
622 |
+
i e</w>
|
623 |
+
em p
|
624 |
+
am es</w>
|
625 |
+
er n</w>
|
626 |
+
Ġn or
|
627 |
+
iv ed</w>
|
628 |
+
ev el
|
629 |
+
Ġsuc h</w>
|
630 |
+
ar ds</w>
|
631 |
+
Ġin d
|
632 |
+
ik e</w>
|
633 |
+
Ġg en
|
634 |
+
er t
|
635 |
+
Ġy ear</w>
|
636 |
+
Ġus ed</w>
|
637 |
+
Ġn ew</w>
|
638 |
+
Ġ 5</w>
|
639 |
+
Ġal b
|
640 |
+
s p
|
641 |
+
y p
|
642 |
+
Ġwit h
|
643 |
+
Ġwh ere</w>
|
644 |
+
ic s</w>
|
645 |
+
ĠTh is</w>
|
646 |
+
Ġthe m</w>
|
647 |
+
w n</w>
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"tokenizer_class": "CLIPTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer/vocab.json
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"!": 2,
|
3 |
+
"!</w>": 345,
|
4 |
+
"\"": 3,
|
5 |
+
"\"</w>": 344,
|
6 |
+
"#": 4,
|
7 |
+
"#</w>": 325,
|
8 |
+
"$": 5,
|
9 |
+
"$</w>": 348,
|
10 |
+
"%": 6,
|
11 |
+
"%</w>": 351,
|
12 |
+
"&": 7,
|
13 |
+
"&</w>": 352,
|
14 |
+
"'": 8,
|
15 |
+
"'</w>": 296,
|
16 |
+
"(": 9,
|
17 |
+
"(</w>": 318,
|
18 |
+
")": 10,
|
19 |
+
")</w>": 330,
|
20 |
+
"*": 11,
|
21 |
+
"*</w>": 327,
|
22 |
+
"+": 12,
|
23 |
+
"+</w>": 341,
|
24 |
+
",": 13,
|
25 |
+
",</w>": 279,
|
26 |
+
",@</w>": 754,
|
27 |
+
"-": 14,
|
28 |
+
"-</w>": 276,
|
29 |
+
"-@</w>": 439,
|
30 |
+
".": 15,
|
31 |
+
".</w>": 253,
|
32 |
+
".@</w>": 695,
|
33 |
+
"/": 16,
|
34 |
+
"/</w>": 350,
|
35 |
+
"0": 17,
|
36 |
+
"00</w>": 647,
|
37 |
+
"0</w>": 216,
|
38 |
+
"1": 18,
|
39 |
+
"1</w>": 222,
|
40 |
+
"2": 19,
|
41 |
+
"2</w>": 231,
|
42 |
+
"3": 20,
|
43 |
+
"3</w>": 243,
|
44 |
+
"4": 21,
|
45 |
+
"4</w>": 233,
|
46 |
+
"5": 22,
|
47 |
+
"5</w>": 240,
|
48 |
+
"6": 23,
|
49 |
+
"6</w>": 226,
|
50 |
+
"7": 24,
|
51 |
+
"7</w>": 215,
|
52 |
+
"8": 25,
|
53 |
+
"8</w>": 236,
|
54 |
+
"9": 26,
|
55 |
+
"9</w>": 242,
|
56 |
+
":": 27,
|
57 |
+
":</w>": 353,
|
58 |
+
";": 28,
|
59 |
+
";</w>": 317,
|
60 |
+
"<": 29,
|
61 |
+
"<</w>": 340,
|
62 |
+
"<|endoftext|>": 1,
|
63 |
+
"<|startoftext|>": 0,
|
64 |
+
"=": 30,
|
65 |
+
"=</w>": 342,
|
66 |
+
">": 31,
|
67 |
+
"></w>": 300,
|
68 |
+
"?": 32,
|
69 |
+
"?</w>": 346,
|
70 |
+
"@": 33,
|
71 |
+
"@</w>": 320,
|
72 |
+
"A": 34,
|
73 |
+
"A</w>": 227,
|
74 |
+
"B": 35,
|
75 |
+
"B</w>": 258,
|
76 |
+
"C": 36,
|
77 |
+
"C</w>": 239,
|
78 |
+
"D": 37,
|
79 |
+
"D</w>": 255,
|
80 |
+
"E": 38,
|
81 |
+
"E</w>": 246,
|
82 |
+
"F": 39,
|
83 |
+
"F</w>": 213,
|
84 |
+
"G": 40,
|
85 |
+
"G</w>": 283,
|
86 |
+
"H": 41,
|
87 |
+
"H</w>": 219,
|
88 |
+
"I": 42,
|
89 |
+
"I</w>": 237,
|
90 |
+
"J": 43,
|
91 |
+
"J</w>": 251,
|
92 |
+
"K": 44,
|
93 |
+
"K</w>": 254,
|
94 |
+
"L": 45,
|
95 |
+
"L</w>": 218,
|
96 |
+
"M": 46,
|
97 |
+
"M</w>": 234,
|
98 |
+
"N": 47,
|
99 |
+
"N</w>": 238,
|
100 |
+
"O": 48,
|
101 |
+
"O</w>": 265,
|
102 |
+
"P": 49,
|
103 |
+
"P</w>": 245,
|
104 |
+
"Q": 50,
|
105 |
+
"Q</w>": 309,
|
106 |
+
"R": 51,
|
107 |
+
"R</w>": 264,
|
108 |
+
"S": 52,
|
109 |
+
"S</w>": 230,
|
110 |
+
"T": 53,
|
111 |
+
"T</w>": 235,
|
112 |
+
"U": 54,
|
113 |
+
"U</w>": 268,
|
114 |
+
"V": 55,
|
115 |
+
"V</w>": 248,
|
116 |
+
"W": 56,
|
117 |
+
"W</w>": 274,
|
118 |
+
"X": 57,
|
119 |
+
"X</w>": 263,
|
120 |
+
"Y": 58,
|
121 |
+
"Y</w>": 310,
|
122 |
+
"Z": 59,
|
123 |
+
"Z</w>": 207,
|
124 |
+
"[": 60,
|
125 |
+
"[</w>": 270,
|
126 |
+
"\\": 61,
|
127 |
+
"\\</w>": 338,
|
128 |
+
"]": 62,
|
129 |
+
"]</w>": 289,
|
130 |
+
"^": 63,
|
131 |
+
"^</w>": 331,
|
132 |
+
"_": 64,
|
133 |
+
"_</w>": 334,
|
134 |
+
"`": 65,
|
135 |
+
"`</w>": 347,
|
136 |
+
"a": 66,
|
137 |
+
"a</w>": 197,
|
138 |
+
"ab": 555,
|
139 |
+
"able</w>": 820,
|
140 |
+
"ac": 420,
|
141 |
+
"ace</w>": 806,
|
142 |
+
"ach": 791,
|
143 |
+
"ach</w>": 885,
|
144 |
+
"ack</w>": 670,
|
145 |
+
"act": 929,
|
146 |
+
"ad": 508,
|
147 |
+
"ad</w>": 860,
|
148 |
+
"ade</w>": 771,
|
149 |
+
"ag": 511,
|
150 |
+
"age</w>": 710,
|
151 |
+
"ain": 568,
|
152 |
+
"ain</w>": 675,
|
153 |
+
"ak": 577,
|
154 |
+
"ake</w>": 882,
|
155 |
+
"al": 397,
|
156 |
+
"al</w>": 405,
|
157 |
+
"all": 664,
|
158 |
+
"all</w>": 658,
|
159 |
+
"ally</w>": 588,
|
160 |
+
"als</w>": 796,
|
161 |
+
"am": 426,
|
162 |
+
"am</w>": 817,
|
163 |
+
"ame</w>": 552,
|
164 |
+
"ames</w>": 976,
|
165 |
+
"amp": 800,
|
166 |
+
"an": 384,
|
167 |
+
"an</w>": 425,
|
168 |
+
"ance</w>": 751,
|
169 |
+
"and": 609,
|
170 |
+
"and</w>": 780,
|
171 |
+
"ang": 816,
|
172 |
+
"ans</w>": 844,
|
173 |
+
"ant": 837,
|
174 |
+
"ant</w>": 753,
|
175 |
+
"any</w>": 766,
|
176 |
+
"ap": 586,
|
177 |
+
"ar": 376,
|
178 |
+
"ar</w>": 579,
|
179 |
+
"ard</w>": 649,
|
180 |
+
"ards</w>": 982,
|
181 |
+
"ary</w>": 611,
|
182 |
+
"as": 416,
|
183 |
+
"as</w>": 404,
|
184 |
+
"ase</w>": 849,
|
185 |
+
"ased</w>": 814,
|
186 |
+
"ason</w>": 865,
|
187 |
+
"ass": 792,
|
188 |
+
"ast</w>": 661,
|
189 |
+
"at": 372,
|
190 |
+
"at</w>": 434,
|
191 |
+
"ate</w>": 541,
|
192 |
+
"ated</w>": 543,
|
193 |
+
"ater</w>": 709,
|
194 |
+
"ates</w>": 825,
|
195 |
+
"ath": 730,
|
196 |
+
"ating</w>": 922,
|
197 |
+
"ation</w>": 497,
|
198 |
+
"ational</w>": 933,
|
199 |
+
"ations</w>": 744,
|
200 |
+
"att": 903,
|
201 |
+
"aus": 858,
|
202 |
+
"av": 681,
|
203 |
+
"ay": 684,
|
204 |
+
"ay</w>": 523,
|
205 |
+
"b": 67,
|
206 |
+
"b</w>": 212,
|
207 |
+
"ber</w>": 593,
|
208 |
+
"c": 68,
|
209 |
+
"c</w>": 224,
|
210 |
+
"cc": 960,
|
211 |
+
"ce</w>": 496,
|
212 |
+
"ces</w>": 830,
|
213 |
+
"ch": 520,
|
214 |
+
"ch</w>": 603,
|
215 |
+
"ct": 834,
|
216 |
+
"d": 69,
|
217 |
+
"d</w>": 196,
|
218 |
+
"ded</w>": 665,
|
219 |
+
"der</w>": 690,
|
220 |
+
"ding</w>": 633,
|
221 |
+
"ds</w>": 530,
|
222 |
+
"duc": 671,
|
223 |
+
"e": 70,
|
224 |
+
"e</w>": 195,
|
225 |
+
"ea": 471,
|
226 |
+
"ear": 596,
|
227 |
+
"ear</w>": 669,
|
228 |
+
"ears</w>": 906,
|
229 |
+
"eb": 852,
|
230 |
+
"ec": 418,
|
231 |
+
"ect": 838,
|
232 |
+
"ect</w>": 964,
|
233 |
+
"ed": 563,
|
234 |
+
"ed</w>": 362,
|
235 |
+
"ee": 941,
|
236 |
+
"een</w>": 779,
|
237 |
+
"ef": 840,
|
238 |
+
"eg": 731,
|
239 |
+
"el": 407,
|
240 |
+
"el</w>": 610,
|
241 |
+
"eld</w>": 973,
|
242 |
+
"ell": 759,
|
243 |
+
"ell</w>": 756,
|
244 |
+
"ely</w>": 719,
|
245 |
+
"em": 455,
|
246 |
+
"ember</w>": 777,
|
247 |
+
"ement</w>": 959,
|
248 |
+
"emp": 975,
|
249 |
+
"en": 375,
|
250 |
+
"en</w>": 427,
|
251 |
+
"ence</w>": 685,
|
252 |
+
"ens": 880,
|
253 |
+
"ent": 478,
|
254 |
+
"ent</w>": 468,
|
255 |
+
"ents</w>": 674,
|
256 |
+
"ep": 545,
|
257 |
+
"er": 364,
|
258 |
+
"er</w>": 374,
|
259 |
+
"eral</w>": 793,
|
260 |
+
"ere</w>": 481,
|
261 |
+
"ered</w>": 748,
|
262 |
+
"eric": 921,
|
263 |
+
"erm": 861,
|
264 |
+
"ern": 887,
|
265 |
+
"ern</w>": 977,
|
266 |
+
"ers": 598,
|
267 |
+
"ers</w>": 486,
|
268 |
+
"ert": 986,
|
269 |
+
"ery</w>": 805,
|
270 |
+
"es": 402,
|
271 |
+
"es</w>": 388,
|
272 |
+
"ese</w>": 794,
|
273 |
+
"ess": 678,
|
274 |
+
"ess</w>": 693,
|
275 |
+
"est": 606,
|
276 |
+
"est</w>": 584,
|
277 |
+
"et": 460,
|
278 |
+
"et</w>": 594,
|
279 |
+
"etw": 824,
|
280 |
+
"etween</w>": 886,
|
281 |
+
"ev": 493,
|
282 |
+
"evel": 980,
|
283 |
+
"ever</w>": 855,
|
284 |
+
"ew": 687,
|
285 |
+
"ew</w>": 612,
|
286 |
+
"ex": 938,
|
287 |
+
"ey</w>": 713,
|
288 |
+
"f": 71,
|
289 |
+
"f</w>": 209,
|
290 |
+
"fer": 911,
|
291 |
+
"ff": 587,
|
292 |
+
"for": 728,
|
293 |
+
"form": 901,
|
294 |
+
"fter</w>": 634,
|
295 |
+
"g": 72,
|
296 |
+
"g</w>": 214,
|
297 |
+
"ge</w>": 592,
|
298 |
+
"h": 73,
|
299 |
+
"h</w>": 203,
|
300 |
+
"i": 74,
|
301 |
+
"i</w>": 205,
|
302 |
+
"ia</w>": 605,
|
303 |
+
"ial</w>": 672,
|
304 |
+
"ian</w>": 638,
|
305 |
+
"ib": 726,
|
306 |
+
"ic": 395,
|
307 |
+
"ic</w>": 510,
|
308 |
+
"ical</w>": 625,
|
309 |
+
"ice</w>": 782,
|
310 |
+
"ich</w>": 561,
|
311 |
+
"ics</w>": 996,
|
312 |
+
"id": 463,
|
313 |
+
"id</w>": 613,
|
314 |
+
"ide</w>": 739,
|
315 |
+
"ie</w>": 974,
|
316 |
+
"ied</w>": 812,
|
317 |
+
"ies</w>": 516,
|
318 |
+
"if": 524,
|
319 |
+
"ig": 444,
|
320 |
+
"igh": 537,
|
321 |
+
"ight</w>": 680,
|
322 |
+
"ik": 775,
|
323 |
+
"ike</w>": 984,
|
324 |
+
"il": 406,
|
325 |
+
"il</w>": 714,
|
326 |
+
"ile</w>": 721,
|
327 |
+
"ill": 608,
|
328 |
+
"ill</w>": 789,
|
329 |
+
"ily</w>": 950,
|
330 |
+
"im": 469,
|
331 |
+
"im</w>": 767,
|
332 |
+
"ime</w>": 691,
|
333 |
+
"in": 358,
|
334 |
+
"in</w>": 501,
|
335 |
+
"ine</w>": 607,
|
336 |
+
"ing": 557,
|
337 |
+
"ing</w>": 383,
|
338 |
+
"ings</w>": 815,
|
339 |
+
"ion": 472,
|
340 |
+
"ion</w>": 408,
|
341 |
+
"ional</w>": 717,
|
342 |
+
"ions</w>": 540,
|
343 |
+
"ip": 733,
|
344 |
+
"ip</w>": 818,
|
345 |
+
"ir": 453,
|
346 |
+
"ir</w>": 554,
|
347 |
+
"is": 393,
|
348 |
+
"is</w>": 441,
|
349 |
+
"ish": 694,
|
350 |
+
"ish</w>": 654,
|
351 |
+
"ished</w>": 942,
|
352 |
+
"ision</w>": 944,
|
353 |
+
"iss": 876,
|
354 |
+
"ist": 550,
|
355 |
+
"ist</w>": 811,
|
356 |
+
"it": 378,
|
357 |
+
"it</w>": 746,
|
358 |
+
"ite</w>": 760,
|
359 |
+
"ited</w>": 809,
|
360 |
+
"ition</w>": 797,
|
361 |
+
"ity</w>": 542,
|
362 |
+
"iv": 435,
|
363 |
+
"ive</w>": 549,
|
364 |
+
"ived</w>": 979,
|
365 |
+
"iz": 722,
|
366 |
+
"j": 75,
|
367 |
+
"j</w>": 288,
|
368 |
+
"k": 76,
|
369 |
+
"k</w>": 210,
|
370 |
+
"ked</w>": 810,
|
371 |
+
"king</w>": 924,
|
372 |
+
"ks</w>": 692,
|
373 |
+
"l": 77,
|
374 |
+
"l</w>": 201,
|
375 |
+
"la": 467,
|
376 |
+
"land</w>": 743,
|
377 |
+
"ld</w>": 559,
|
378 |
+
"le": 536,
|
379 |
+
"le</w>": 465,
|
380 |
+
"les</w>": 799,
|
381 |
+
"lud": 718,
|
382 |
+
"ly</w>": 433,
|
383 |
+
"m": 78,
|
384 |
+
"m</w>": 202,
|
385 |
+
"ment</w>": 701,
|
386 |
+
"mp": 651,
|
387 |
+
"n": 79,
|
388 |
+
"n</w>": 199,
|
389 |
+
"nd</w>": 369,
|
390 |
+
"ned</w>": 758,
|
391 |
+
"ning</w>": 843,
|
392 |
+
"o": 80,
|
393 |
+
"o</w>": 198,
|
394 |
+
"ob": 920,
|
395 |
+
"oc": 534,
|
396 |
+
"od": 575,
|
397 |
+
"og": 604,
|
398 |
+
"oh": 972,
|
399 |
+
"oin": 831,
|
400 |
+
"ol": 428,
|
401 |
+
"oll": 703,
|
402 |
+
"ollow": 928,
|
403 |
+
"olog": 932,
|
404 |
+
"om": 419,
|
405 |
+
"om</w>": 883,
|
406 |
+
"ome</w>": 663,
|
407 |
+
"on": 382,
|
408 |
+
"on</w>": 390,
|
409 |
+
"ond</w>": 872,
|
410 |
+
"one</w>": 835,
|
411 |
+
"ong": 850,
|
412 |
+
"ong</w>": 582,
|
413 |
+
"oo": 517,
|
414 |
+
"ood</w>": 927,
|
415 |
+
"ook</w>": 897,
|
416 |
+
"op": 531,
|
417 |
+
"op</w>": 971,
|
418 |
+
"or": 377,
|
419 |
+
"or</w>": 424,
|
420 |
+
"ore</w>": 571,
|
421 |
+
"ors</w>": 917,
|
422 |
+
"ort": 768,
|
423 |
+
"ort</w>": 752,
|
424 |
+
"ory</w>": 737,
|
425 |
+
"os": 447,
|
426 |
+
"ose</w>": 881,
|
427 |
+
"ost</w>": 646,
|
428 |
+
"ot": 600,
|
429 |
+
"ot</w>": 879,
|
430 |
+
"ou": 392,
|
431 |
+
"oug": 659,
|
432 |
+
"ough</w>": 798,
|
433 |
+
"ould</w>": 640,
|
434 |
+
"oun": 553,
|
435 |
+
"ound</w>": 961,
|
436 |
+
"our": 648,
|
437 |
+
"our</w>": 772,
|
438 |
+
"ous</w>": 712,
|
439 |
+
"out</w>": 683,
|
440 |
+
"outh</w>": 945,
|
441 |
+
"ov": 515,
|
442 |
+
"ow": 461,
|
443 |
+
"ow</w>": 666,
|
444 |
+
"own</w>": 657,
|
445 |
+
"oy": 952,
|
446 |
+
"p": 81,
|
447 |
+
"p</w>": 217,
|
448 |
+
"per": 715,
|
449 |
+
"ph": 916,
|
450 |
+
"pp": 518,
|
451 |
+
"q": 82,
|
452 |
+
"q</w>": 280,
|
453 |
+
"qu": 546,
|
454 |
+
"r": 83,
|
455 |
+
"r</w>": 204,
|
456 |
+
"ra": 457,
|
457 |
+
"ran": 624,
|
458 |
+
"re": 367,
|
459 |
+
"ree</w>": 765,
|
460 |
+
"ren": 790,
|
461 |
+
"res": 572,
|
462 |
+
"res</w>": 747,
|
463 |
+
"ri": 487,
|
464 |
+
"rib": 804,
|
465 |
+
"ric": 745,
|
466 |
+
"rit": 589,
|
467 |
+
"ro": 385,
|
468 |
+
"rom</w>": 498,
|
469 |
+
"rop": 826,
|
470 |
+
"roug": 803,
|
471 |
+
"ru": 951,
|
472 |
+
"ruc": 891,
|
473 |
+
"ry</w>": 908,
|
474 |
+
"s": 84,
|
475 |
+
"s</w>": 206,
|
476 |
+
"se</w>": 741,
|
477 |
+
"sh": 795,
|
478 |
+
"so</w>": 630,
|
479 |
+
"sp": 992,
|
480 |
+
"ss": 673,
|
481 |
+
"st": 519,
|
482 |
+
"st</w>": 528,
|
483 |
+
"t": 85,
|
484 |
+
"t</w>": 208,
|
485 |
+
"te</w>": 954,
|
486 |
+
"ted</w>": 489,
|
487 |
+
"ter": 535,
|
488 |
+
"ter</w>": 505,
|
489 |
+
"th": 449,
|
490 |
+
"th</w>": 488,
|
491 |
+
"ther</w>": 576,
|
492 |
+
"ting</w>": 676,
|
493 |
+
"tion</w>": 570,
|
494 |
+
"tr": 619,
|
495 |
+
"ts</w>": 436,
|
496 |
+
"tt": 720,
|
497 |
+
"tur": 953,
|
498 |
+
"ty</w>": 821,
|
499 |
+
"u": 86,
|
500 |
+
"u</w>": 229,
|
501 |
+
"ub": 591,
|
502 |
+
"ubl": 842,
|
503 |
+
"uc": 490,
|
504 |
+
"ud": 538,
|
505 |
+
"ue</w>": 652,
|
506 |
+
"ug": 560,
|
507 |
+
"uil": 930,
|
508 |
+
"ul": 494,
|
509 |
+
"um": 532,
|
510 |
+
"um</w>": 644,
|
511 |
+
"un": 448,
|
512 |
+
"und</w>": 828,
|
513 |
+
"up": 833,
|
514 |
+
"up</w>": 700,
|
515 |
+
"ur": 413,
|
516 |
+
"ure</w>": 635,
|
517 |
+
"uring</w>": 702,
|
518 |
+
"ury</w>": 957,
|
519 |
+
"us": 438,
|
520 |
+
"us</w>": 622,
|
521 |
+
"ust</w>": 846,
|
522 |
+
"ut": 529,
|
523 |
+
"ut</w>": 527,
|
524 |
+
"v": 87,
|
525 |
+
"v</w>": 232,
|
526 |
+
"ve</w>": 567,
|
527 |
+
"vi": 866,
|
528 |
+
"w": 88,
|
529 |
+
"w</w>": 250,
|
530 |
+
"way</w>": 970,
|
531 |
+
"wn</w>": 999,
|
532 |
+
"x": 89,
|
533 |
+
"x</w>": 269,
|
534 |
+
"y": 90,
|
535 |
+
"y</w>": 211,
|
536 |
+
"yp": 993,
|
537 |
+
"z": 91,
|
538 |
+
"z</w>": 228,
|
539 |
+
"|": 92,
|
540 |
+
"|</w>": 304,
|
541 |
+
"}": 93,
|
542 |
+
"}</w>": 336,
|
543 |
+
"~": 94,
|
544 |
+
"~</w>": 343,
|
545 |
+
"¡": 95,
|
546 |
+
"¡</w>": 220,
|
547 |
+
"¢": 96,
|
548 |
+
"¢</w>": 306,
|
549 |
+
"£": 97,
|
550 |
+
"£</w>": 323,
|
551 |
+
"¤": 98,
|
552 |
+
"¤</w>": 292,
|
553 |
+
"¥": 99,
|
554 |
+
"¥</w>": 339,
|
555 |
+
"¦": 100,
|
556 |
+
"¦</w>": 303,
|
557 |
+
"§": 101,
|
558 |
+
"§</w>": 275,
|
559 |
+
"¨": 102,
|
560 |
+
"¨</w>": 282,
|
561 |
+
"©": 103,
|
562 |
+
"©</w>": 259,
|
563 |
+
"ª": 104,
|
564 |
+
"ª</w>": 286,
|
565 |
+
"«": 105,
|
566 |
+
"«</w>": 266,
|
567 |
+
"¬": 106,
|
568 |
+
"¬</w>": 319,
|
569 |
+
"®": 107,
|
570 |
+
"®</w>": 329,
|
571 |
+
"¯": 108,
|
572 |
+
"¯</w>": 287,
|
573 |
+
"°": 109,
|
574 |
+
"°</w>": 298,
|
575 |
+
"±": 110,
|
576 |
+
"±</w>": 200,
|
577 |
+
"²": 111,
|
578 |
+
"²</w>": 284,
|
579 |
+
"³": 112,
|
580 |
+
"³</w>": 272,
|
581 |
+
"´": 113,
|
582 |
+
"´</w>": 307,
|
583 |
+
"µ": 114,
|
584 |
+
"µ</w>": 261,
|
585 |
+
"¶": 115,
|
586 |
+
"¶</w>": 301,
|
587 |
+
"·": 116,
|
588 |
+
"·</w>": 326,
|
589 |
+
"¸": 117,
|
590 |
+
"¸</w>": 257,
|
591 |
+
"¹": 118,
|
592 |
+
"¹</w>": 241,
|
593 |
+
"º": 119,
|
594 |
+
"º</w>": 260,
|
595 |
+
"»": 120,
|
596 |
+
"»</w>": 247,
|
597 |
+
"¼": 121,
|
598 |
+
"¼</w>": 305,
|
599 |
+
"½": 122,
|
600 |
+
"½</w>": 294,
|
601 |
+
"¾": 123,
|
602 |
+
"¾</w>": 316,
|
603 |
+
"¿": 124,
|
604 |
+
"¿</w>": 271,
|
605 |
+
"Â": 125,
|
606 |
+
"Ã": 126,
|
607 |
+
"Ä": 127,
|
608 |
+
"Å": 128,
|
609 |
+
"Æ": 129,
|
610 |
+
"Ç": 130,
|
611 |
+
"È": 131,
|
612 |
+
"É": 132,
|
613 |
+
"Ê": 133,
|
614 |
+
"Ë": 134,
|
615 |
+
"Ì": 135,
|
616 |
+
"Í": 136,
|
617 |
+
"Î": 137,
|
618 |
+
"Ï": 138,
|
619 |
+
"Ð": 139,
|
620 |
+
"Ñ": 140,
|
621 |
+
"Ö": 141,
|
622 |
+
"×": 142,
|
623 |
+
"Ø": 143,
|
624 |
+
"Ù": 144,
|
625 |
+
"Ü": 145,
|
626 |
+
"à": 146,
|
627 |
+
"á": 147,
|
628 |
+
"â": 148,
|
629 |
+
"ã": 149,
|
630 |
+
"ä": 150,
|
631 |
+
"å": 151,
|
632 |
+
"æ": 152,
|
633 |
+
"ç": 153,
|
634 |
+
"è": 154,
|
635 |
+
"é": 155,
|
636 |
+
"ë": 156,
|
637 |
+
"ì": 157,
|
638 |
+
"ï": 158,
|
639 |
+
"Ċ": 159,
|
640 |
+
"Ċ</w>": 349,
|
641 |
+
"Ġ": 160,
|
642 |
+
"Ġ\"</w>": 401,
|
643 |
+
"Ġ'</w>": 431,
|
644 |
+
"Ġ(</w>": 475,
|
645 |
+
"Ġ)</w>": 474,
|
646 |
+
"Ġ,</w>": 360,
|
647 |
+
"Ġ.</w>": 365,
|
648 |
+
"Ġ0": 847,
|
649 |
+
"Ġ1": 411,
|
650 |
+
"Ġ18": 769,
|
651 |
+
"Ġ19": 492,
|
652 |
+
"Ġ199": 893,
|
653 |
+
"Ġ1</w>": 778,
|
654 |
+
"Ġ2": 462,
|
655 |
+
"Ġ20": 522,
|
656 |
+
"Ġ200": 620,
|
657 |
+
"Ġ201": 734,
|
658 |
+
"Ġ2</w>": 813,
|
659 |
+
"Ġ3": 735,
|
660 |
+
"Ġ3</w>": 888,
|
661 |
+
"Ġ4": 870,
|
662 |
+
"Ġ5": 907,
|
663 |
+
"Ġ5</w>": 990,
|
664 |
+
"Ġ:</w>": 637,
|
665 |
+
"Ġ;</w>": 615,
|
666 |
+
"Ġ</w>": 333,
|
667 |
+
"Ġ=</w>": 399,
|
668 |
+
"Ġ@": 417,
|
669 |
+
"Ġ@,@</w>": 755,
|
670 |
+
"Ġ@-@</w>": 440,
|
671 |
+
"Ġ@.@</w>": 696,
|
672 |
+
"ĠA": 409,
|
673 |
+
"ĠA</w>": 807,
|
674 |
+
"ĠAl": 716,
|
675 |
+
"ĠAm": 829,
|
676 |
+
"ĠAmeric": 958,
|
677 |
+
"ĠAn": 784,
|
678 |
+
"ĠAr": 894,
|
679 |
+
"ĠB": 432,
|
680 |
+
"ĠC": 410,
|
681 |
+
"ĠCh": 581,
|
682 |
+
"ĠCom": 904,
|
683 |
+
"ĠD": 464,
|
684 |
+
"ĠE": 500,
|
685 |
+
"ĠEn": 878,
|
686 |
+
"ĠF": 470,
|
687 |
+
"ĠG": 482,
|
688 |
+
"ĠH": 445,
|
689 |
+
"ĠHe</w>": 742,
|
690 |
+
"ĠI": 442,
|
691 |
+
"ĠI</w>": 827,
|
692 |
+
"ĠIn": 704,
|
693 |
+
"ĠIn</w>": 574,
|
694 |
+
"ĠIt</w>": 774,
|
695 |
+
"ĠJ": 491,
|
696 |
+
"ĠK": 548,
|
697 |
+
"ĠL": 484,
|
698 |
+
"ĠM": 423,
|
699 |
+
"ĠMar": 776,
|
700 |
+
"ĠN": 483,
|
701 |
+
"ĠO": 504,
|
702 |
+
"ĠP": 450,
|
703 |
+
"ĠPar": 967,
|
704 |
+
"ĠR": 459,
|
705 |
+
"ĠS": 403,
|
706 |
+
"ĠSh": 750,
|
707 |
+
"ĠSt": 590,
|
708 |
+
"ĠT": 396,
|
709 |
+
"ĠTh": 414,
|
710 |
+
"ĠThe</w>": 437,
|
711 |
+
"ĠThis</w>": 997,
|
712 |
+
"ĠU": 585,
|
713 |
+
"ĠUn": 773,
|
714 |
+
"ĠV": 617,
|
715 |
+
"ĠW": 479,
|
716 |
+
"ĠWh": 853,
|
717 |
+
"ĠY": 757,
|
718 |
+
"Ġa": 356,
|
719 |
+
"Ġa</w>": 394,
|
720 |
+
"Ġab": 653,
|
721 |
+
"Ġabout</w>": 899,
|
722 |
+
"Ġac": 583,
|
723 |
+
"Ġacc": 874,
|
724 |
+
"Ġad": 656,
|
725 |
+
"Ġafter</w>": 763,
|
726 |
+
"Ġag": 725,
|
727 |
+
"Ġal": 476,
|
728 |
+
"Ġalb": 991,
|
729 |
+
"Ġall</w>": 839,
|
730 |
+
"Ġalso</w>": 641,
|
731 |
+
"Ġan": 602,
|
732 |
+
"Ġan</w>": 562,
|
733 |
+
"Ġand</w>": 381,
|
734 |
+
"Ġapp": 711,
|
735 |
+
"Ġar": 507,
|
736 |
+
"Ġare</w>": 601,
|
737 |
+
"Ġas</w>": 454,
|
738 |
+
"Ġass": 947,
|
739 |
+
"Ġat</w>": 514,
|
740 |
+
"Ġatt": 788,
|
741 |
+
"Ġb": 371,
|
742 |
+
"Ġbe": 499,
|
743 |
+
"Ġbe</w>": 595,
|
744 |
+
"Ġbec": 706,
|
745 |
+
"Ġbeen</w>": 686,
|
746 |
+
"Ġbeg": 915,
|
747 |
+
"Ġbetween</w>": 914,
|
748 |
+
"Ġbo": 819,
|
749 |
+
"Ġbut</w>": 623,
|
750 |
+
"Ġby</w>": 473,
|
751 |
+
"Ġc": 368,
|
752 |
+
"Ġcent": 823,
|
753 |
+
"Ġch": 526,
|
754 |
+
"Ġchar": 822,
|
755 |
+
"Ġcl": 689,
|
756 |
+
"Ġcom": 509,
|
757 |
+
"Ġcomm": 707,
|
758 |
+
"Ġcomp": 616,
|
759 |
+
"Ġcon": 477,
|
760 |
+
"Ġcons": 841,
|
761 |
+
"Ġcont": 655,
|
762 |
+
"Ġcre": 931,
|
763 |
+
"Ġd": 387,
|
764 |
+
"Ġde": 627,
|
765 |
+
"Ġdec": 873,
|
766 |
+
"Ġdef": 965,
|
767 |
+
"Ġdes": 738,
|
768 |
+
"Ġdi": 892,
|
769 |
+
"Ġdis": 708,
|
770 |
+
"Ġduring</w>": 864,
|
771 |
+
"Ġe": 421,
|
772 |
+
"Ġear": 854,
|
773 |
+
"Ġel": 869,
|
774 |
+
"Ġen": 662,
|
775 |
+
"Ġev": 682,
|
776 |
+
"Ġex": 539,
|
777 |
+
"Ġexp": 867,
|
778 |
+
"Ġf": 370,
|
779 |
+
"Ġfe": 845,
|
780 |
+
"Ġfil": 913,
|
781 |
+
"Ġfin": 786,
|
782 |
+
"Ġfir": 599,
|
783 |
+
"Ġfirst</w>": 626,
|
784 |
+
"Ġfl": 877,
|
785 |
+
"Ġfor": 614,
|
786 |
+
"Ġfor</w>": 458,
|
787 |
+
"Ġform": 963,
|
788 |
+
"Ġfrom</w>": 503,
|
789 |
+
"Ġg": 430,
|
790 |
+
"Ġgame</w>": 895,
|
791 |
+
"Ġgen": 985,
|
792 |
+
"Ġgro": 890,
|
793 |
+
"Ġh": 380,
|
794 |
+
"Ġha": 485,
|
795 |
+
"Ġhad</w>": 566,
|
796 |
+
"Ġhas</w>": 679,
|
797 |
+
"Ġhave</w>": 667,
|
798 |
+
"Ġhe</w>": 558,
|
799 |
+
"Ġher</w>": 660,
|
800 |
+
"Ġhim</w>": 896,
|
801 |
+
"Ġhis</w>": 512,
|
802 |
+
"Ġi": 366,
|
803 |
+
"Ġimp": 909,
|
804 |
+
"Ġin": 429,
|
805 |
+
"Ġin</w>": 389,
|
806 |
+
"Ġinc": 618,
|
807 |
+
"Ġinclud": 761,
|
808 |
+
"Ġind": 983,
|
809 |
+
"Ġint": 628,
|
810 |
+
"Ġinter": 832,
|
811 |
+
"Ġinto</w>": 785,
|
812 |
+
"Ġis</w>": 480,
|
813 |
+
"Ġit</w>": 533,
|
814 |
+
"Ġits</w>": 642,
|
815 |
+
"Ġj": 723,
|
816 |
+
"Ġk": 564,
|
817 |
+
"Ġkn": 857,
|
818 |
+
"Ġl": 398,
|
819 |
+
"Ġlar": 962,
|
820 |
+
"Ġlater</w>": 936,
|
821 |
+
"Ġlea": 868,
|
822 |
+
"Ġm": 386,
|
823 |
+
"Ġmade</w>": 949,
|
824 |
+
"Ġme": 968,
|
825 |
+
"Ġmore</w>": 802,
|
826 |
+
"Ġmost</w>": 910,
|
827 |
+
"Ġmov": 956,
|
828 |
+
"Ġmus": 966,
|
829 |
+
"Ġn": 415,
|
830 |
+
"Ġnew</w>": 989,
|
831 |
+
"Ġno": 547,
|
832 |
+
"Ġnor": 978,
|
833 |
+
"Ġnot</w>": 632,
|
834 |
+
"Ġnum": 926,
|
835 |
+
"Ġo": 359,
|
836 |
+
"Ġof</w>": 373,
|
837 |
+
"Ġoff": 875,
|
838 |
+
"Ġon": 551,
|
839 |
+
"Ġon</w>": 456,
|
840 |
+
"Ġone</w>": 677,
|
841 |
+
"Ġonly</w>": 871,
|
842 |
+
"Ġor": 699,
|
843 |
+
"Ġor</w>": 645,
|
844 |
+
"Ġother</w>": 787,
|
845 |
+
"Ġout</w>": 925,
|
846 |
+
"Ġov": 729,
|
847 |
+
"Ġover</w>": 856,
|
848 |
+
"Ġp": 379,
|
849 |
+
"Ġpar": 636,
|
850 |
+
"Ġper": 736,
|
851 |
+
"Ġpl": 698,
|
852 |
+
"Ġpla": 697,
|
853 |
+
"Ġplay": 808,
|
854 |
+
"Ġpos": 859,
|
855 |
+
"Ġpr": 889,
|
856 |
+
"Ġpre": 749,
|
857 |
+
"Ġpres": 912,
|
858 |
+
"Ġpro": 506,
|
859 |
+
"Ġproduc": 934,
|
860 |
+
"Ġqu": 955,
|
861 |
+
"Ġr": 521,
|
862 |
+
"Ġra": 863,
|
863 |
+
"Ġre": 400,
|
864 |
+
"Ġrec": 597,
|
865 |
+
"Ġrecor": 919,
|
866 |
+
"Ġreg": 943,
|
867 |
+
"Ġrel": 900,
|
868 |
+
"Ġrele": 946,
|
869 |
+
"Ġrem": 848,
|
870 |
+
"Ġrep": 762,
|
871 |
+
"Ġres": 650,
|
872 |
+
"Ġro": 629,
|
873 |
+
"Ġs": 361,
|
874 |
+
"Ġsa": 905,
|
875 |
+
"Ġsc": 732,
|
876 |
+
"Ġse": 569,
|
877 |
+
"Ġseason</w>": 948,
|
878 |
+
"Ġsec": 781,
|
879 |
+
"Ġser": 740,
|
880 |
+
"Ġsev": 884,
|
881 |
+
"Ġsh": 513,
|
882 |
+
"Ġshe</w>": 862,
|
883 |
+
"Ġsp": 578,
|
884 |
+
"Ġspec": 940,
|
885 |
+
"Ġst": 446,
|
886 |
+
"Ġstar": 939,
|
887 |
+
"Ġsu": 770,
|
888 |
+
"Ġsub": 969,
|
889 |
+
"Ġsuc": 764,
|
890 |
+
"Ġsuch</w>": 981,
|
891 |
+
"Ġt": 354,
|
892 |
+
"Ġth": 355,
|
893 |
+
"Ġthan</w>": 918,
|
894 |
+
"Ġthat</w>": 452,
|
895 |
+
"Ġthe": 502,
|
896 |
+
"Ġthe</w>": 357,
|
897 |
+
"Ġtheir</w>": 621,
|
898 |
+
"Ġthem</w>": 998,
|
899 |
+
"Ġthey</w>": 727,
|
900 |
+
"Ġthis</w>": 705,
|
901 |
+
"Ġthree</w>": 902,
|
902 |
+
"Ġthroug": 923,
|
903 |
+
"Ġtime</w>": 783,
|
904 |
+
"Ġto</w>": 391,
|
905 |
+
"Ġtra": 836,
|
906 |
+
"Ġtw": 639,
|
907 |
+
"Ġtwo</w>": 688,
|
908 |
+
"Ġun": 544,
|
909 |
+
"Ġup</w>": 898,
|
910 |
+
"Ġus": 668,
|
911 |
+
"Ġused</w>": 988,
|
912 |
+
"Ġv": 495,
|
913 |
+
"Ġw": 363,
|
914 |
+
"Ġwas</w>": 422,
|
915 |
+
"Ġwere</w>": 525,
|
916 |
+
"Ġwh": 443,
|
917 |
+
"Ġwhen</w>": 851,
|
918 |
+
"Ġwhere</w>": 995,
|
919 |
+
"Ġwhich</w>": 573,
|
920 |
+
"Ġwhile</w>": 935,
|
921 |
+
"Ġwho</w>": 724,
|
922 |
+
"Ġwit": 451,
|
923 |
+
"Ġwith": 994,
|
924 |
+
"Ġwith</w>": 466,
|
925 |
+
"Ġwor": 643,
|
926 |
+
"Ġwould</w>": 801,
|
927 |
+
"Ġwrit": 937,
|
928 |
+
"Ġy": 580,
|
929 |
+
"Ġyear</w>": 987,
|
930 |
+
"Ġâ": 556,
|
931 |
+
"ĠâĢ": 565,
|
932 |
+
"ĠâĢĵ</w>": 631,
|
933 |
+
"ĠĊ</w>": 412,
|
934 |
+
"Ģ": 161,
|
935 |
+
"Ģ</w>": 223,
|
936 |
+
"ģ": 162,
|
937 |
+
"ģ</w>": 273,
|
938 |
+
"Ĥ": 163,
|
939 |
+
"Ĥ</w>": 262,
|
940 |
+
"ĥ": 164,
|
941 |
+
"ĥ</w>": 337,
|
942 |
+
"Ħ": 165,
|
943 |
+
"Ħ</w>": 278,
|
944 |
+
"ħ": 166,
|
945 |
+
"ħ</w>": 281,
|
946 |
+
"Ĩ": 167,
|
947 |
+
"Ĩ</w>": 308,
|
948 |
+
"ĩ": 168,
|
949 |
+
"ĩ</w>": 225,
|
950 |
+
"Ī": 169,
|
951 |
+
"Ī</w>": 221,
|
952 |
+
"ī": 170,
|
953 |
+
"ī</w>": 244,
|
954 |
+
"Ĭ": 171,
|
955 |
+
"Ĭ</w>": 315,
|
956 |
+
"ĭ": 172,
|
957 |
+
"ĭ</w>": 321,
|
958 |
+
"Į": 173,
|
959 |
+
"Į</w>": 324,
|
960 |
+
"į": 174,
|
961 |
+
"į</w>": 302,
|
962 |
+
"İ": 175,
|
963 |
+
"İ</w>": 249,
|
964 |
+
"ı": 176,
|
965 |
+
"ı</w>": 332,
|
966 |
+
"IJ": 177,
|
967 |
+
"IJ</w>": 295,
|
968 |
+
"ij": 178,
|
969 |
+
"ij</w>": 313,
|
970 |
+
"Ĵ": 179,
|
971 |
+
"Ĵ</w>": 328,
|
972 |
+
"ĵ": 180,
|
973 |
+
"ĵ</w>": 312,
|
974 |
+
"Ķ": 181,
|
975 |
+
"Ķ</w>": 256,
|
976 |
+
"ķ": 182,
|
977 |
+
"ķ</w>": 314,
|
978 |
+
"ĸ": 183,
|
979 |
+
"ĸ</w>": 277,
|
980 |
+
"Ĺ": 184,
|
981 |
+
"Ĺ</w>": 322,
|
982 |
+
"ĺ": 185,
|
983 |
+
"ĺ</w>": 285,
|
984 |
+
"Ļ": 186,
|
985 |
+
"Ļ</w>": 267,
|
986 |
+
"ļ": 187,
|
987 |
+
"ļ</w>": 290,
|
988 |
+
"Ľ": 188,
|
989 |
+
"Ľ</w>": 311,
|
990 |
+
"ľ": 189,
|
991 |
+
"ľ</w>": 299,
|
992 |
+
"Ŀ": 190,
|
993 |
+
"Ŀ</w>": 291,
|
994 |
+
"ŀ": 191,
|
995 |
+
"ŀ</w>": 293,
|
996 |
+
"Ł": 192,
|
997 |
+
"Ł</w>": 335,
|
998 |
+
"ł": 193,
|
999 |
+
"ł</w>": 252,
|
1000 |
+
"Ń": 194,
|
1001 |
+
"Ń</w>": 297
|
1002 |
+
}
|
tokenizer_2/merges.txt
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#version: 0.2
|
2 |
+
Ġ t
|
3 |
+
Ġt h
|
4 |
+
Ġ a
|
5 |
+
Ġth e</w>
|
6 |
+
i n
|
7 |
+
Ġ o
|
8 |
+
Ġ ,</w>
|
9 |
+
Ġ s
|
10 |
+
e d</w>
|
11 |
+
Ġ w
|
12 |
+
e r
|
13 |
+
Ġ .</w>
|
14 |
+
Ġ i
|
15 |
+
r e
|
16 |
+
Ġ c
|
17 |
+
n d</w>
|
18 |
+
Ġ f
|
19 |
+
Ġ b
|
20 |
+
a t
|
21 |
+
Ġo f</w>
|
22 |
+
e r</w>
|
23 |
+
e n
|
24 |
+
a r
|
25 |
+
o r
|
26 |
+
i t
|
27 |
+
Ġ p
|
28 |
+
Ġ h
|
29 |
+
Ġa nd</w>
|
30 |
+
o n
|
31 |
+
in g</w>
|
32 |
+
a n
|
33 |
+
r o
|
34 |
+
Ġ m
|
35 |
+
Ġ d
|
36 |
+
e s</w>
|
37 |
+
Ġi n</w>
|
38 |
+
o n</w>
|
39 |
+
Ġt o</w>
|
40 |
+
o u
|
41 |
+
i s
|
42 |
+
Ġ a</w>
|
43 |
+
i c
|
44 |
+
Ġ T
|
45 |
+
a l
|
46 |
+
Ġ l
|
47 |
+
Ġ =</w>
|
48 |
+
Ġ re
|
49 |
+
Ġ "</w>
|
50 |
+
e s
|
51 |
+
Ġ S
|
52 |
+
a s</w>
|
53 |
+
a l</w>
|
54 |
+
i l
|
55 |
+
e l
|
56 |
+
i on</w>
|
57 |
+
Ġ A
|
58 |
+
Ġ C
|
59 |
+
Ġ 1
|
60 |
+
Ġ Ċ</w>
|
61 |
+
u r
|
62 |
+
ĠT h
|
63 |
+
Ġ n
|
64 |
+
a s
|
65 |
+
Ġ @
|
66 |
+
e c
|
67 |
+
o m
|
68 |
+
a c
|
69 |
+
Ġ e
|
70 |
+
Ġw as</w>
|
71 |
+
Ġ M
|
72 |
+
o r</w>
|
73 |
+
a n</w>
|
74 |
+
a m
|
75 |
+
e n</w>
|
76 |
+
o l
|
77 |
+
Ġ in
|
78 |
+
Ġ g
|
79 |
+
Ġ '</w>
|
80 |
+
Ġ B
|
81 |
+
l y</w>
|
82 |
+
a t</w>
|
83 |
+
i v
|
84 |
+
t s</w>
|
85 |
+
ĠTh e</w>
|
86 |
+
u s
|
87 |
+
- @</w>
|
88 |
+
Ġ@ -@</w>
|
89 |
+
i s</w>
|
90 |
+
Ġ I
|
91 |
+
Ġw h
|
92 |
+
i g
|
93 |
+
Ġ H
|
94 |
+
Ġs t
|
95 |
+
o s
|
96 |
+
u n
|
97 |
+
t h
|
98 |
+
Ġ P
|
99 |
+
Ġw it
|
100 |
+
Ġth at</w>
|
101 |
+
i r
|
102 |
+
Ġa s</w>
|
103 |
+
e m
|
104 |
+
Ġo n</w>
|
105 |
+
r a
|
106 |
+
Ġf or</w>
|
107 |
+
Ġ R
|
108 |
+
e t
|
109 |
+
o w
|
110 |
+
Ġ 2
|
111 |
+
i d
|
112 |
+
Ġ D
|
113 |
+
l e</w>
|
114 |
+
Ġwit h</w>
|
115 |
+
l a
|
116 |
+
en t</w>
|
117 |
+
i m
|
118 |
+
Ġ F
|
119 |
+
e a
|
120 |
+
i on
|
121 |
+
Ġb y</w>
|
122 |
+
Ġ )</w>
|
123 |
+
Ġ (</w>
|
124 |
+
Ġa l
|
125 |
+
Ġc on
|
126 |
+
en t
|
127 |
+
Ġ W
|
128 |
+
Ġi s</w>
|
129 |
+
er e</w>
|
130 |
+
Ġ G
|
131 |
+
Ġ N
|
132 |
+
Ġ L
|
133 |
+
Ġh a
|
134 |
+
er s</w>
|
135 |
+
r i
|
136 |
+
t h</w>
|
137 |
+
t ed</w>
|
138 |
+
u c
|
139 |
+
Ġ J
|
140 |
+
Ġ1 9
|
141 |
+
e v
|
142 |
+
u l
|
143 |
+
Ġ v
|
144 |
+
c e</w>
|
145 |
+
at ion</w>
|
146 |
+
ro m</w>
|
147 |
+
Ġb e
|
148 |
+
Ġ E
|
149 |
+
i n</w>
|
150 |
+
Ġth e
|
151 |
+
Ġf rom</w>
|
152 |
+
Ġ O
|
153 |
+
t er</w>
|
154 |
+
Ġp ro
|
155 |
+
Ġa r
|
156 |
+
a d
|
157 |
+
Ġc om
|
158 |
+
i c</w>
|
159 |
+
a g
|
160 |
+
Ġh is</w>
|
161 |
+
Ġs h
|
162 |
+
Ġa t</w>
|
163 |
+
o v
|
164 |
+
i es</w>
|
165 |
+
o o
|
166 |
+
p p
|
167 |
+
s t
|
168 |
+
c h
|
169 |
+
Ġ r
|
170 |
+
Ġ2 0
|
171 |
+
a y</w>
|
172 |
+
i f
|
173 |
+
Ġw ere</w>
|
174 |
+
Ġc h
|
175 |
+
u t</w>
|
176 |
+
s t</w>
|
177 |
+
u t
|
178 |
+
d s</w>
|
179 |
+
o p
|
180 |
+
u m
|
181 |
+
Ġi t</w>
|
182 |
+
o c
|
183 |
+
t er
|
184 |
+
l e
|
185 |
+
ig h
|
186 |
+
u d
|
187 |
+
Ġe x
|
188 |
+
ion s</w>
|
189 |
+
at e</w>
|
190 |
+
it y</w>
|
191 |
+
at ed</w>
|
192 |
+
Ġ un
|
193 |
+
e p
|
194 |
+
q u
|
195 |
+
Ġn o
|
196 |
+
Ġ K
|
197 |
+
iv e</w>
|
198 |
+
is t
|
199 |
+
Ġo n
|
200 |
+
am e</w>
|
201 |
+
ou n
|
202 |
+
i r</w>
|
203 |
+
a b
|
204 |
+
Ġ â
|
205 |
+
in g
|
206 |
+
Ġh e</w>
|
207 |
+
l d</w>
|
208 |
+
u g
|
209 |
+
ic h</w>
|
210 |
+
Ġa n</w>
|
211 |
+
e d
|
212 |
+
Ġ k
|
213 |
+
Ġâ Ģ
|
214 |
+
Ġha d</w>
|
215 |
+
v e</w>
|
216 |
+
a in
|
217 |
+
Ġs e
|
218 |
+
t ion</w>
|
219 |
+
or e</w>
|
220 |
+
re s
|
221 |
+
Ġwh ich</w>
|
222 |
+
ĠI n</w>
|
223 |
+
o d
|
224 |
+
th er</w>
|
225 |
+
a k
|
226 |
+
Ġs p
|
227 |
+
a r</w>
|
228 |
+
Ġ y
|
229 |
+
ĠC h
|
230 |
+
on g</w>
|
231 |
+
Ġa c
|
232 |
+
es t</w>
|
233 |
+
Ġ U
|
234 |
+
a p
|
235 |
+
f f
|
236 |
+
al ly</w>
|
237 |
+
r it
|
238 |
+
ĠS t
|
239 |
+
u b
|
240 |
+
g e</w>
|
241 |
+
b er</w>
|
242 |
+
e t</w>
|
243 |
+
Ġb e</w>
|
244 |
+
e ar
|
245 |
+
Ġre c
|
246 |
+
er s
|
247 |
+
Ġf ir
|
248 |
+
o t
|
249 |
+
Ġar e</w>
|
250 |
+
Ġa n
|
251 |
+
c h</w>
|
252 |
+
o g
|
253 |
+
i a</w>
|
254 |
+
es t
|
255 |
+
in e</w>
|
256 |
+
il l
|
257 |
+
an d
|
258 |
+
e l</w>
|
259 |
+
ar y</w>
|
260 |
+
e w</w>
|
261 |
+
i d</w>
|
262 |
+
Ġf or
|
263 |
+
Ġ ;</w>
|
264 |
+
Ġcom p
|
265 |
+
Ġ V
|
266 |
+
Ġin c
|
267 |
+
t r
|
268 |
+
Ġ20 0
|
269 |
+
Ġthe ir</w>
|
270 |
+
u s</w>
|
271 |
+
Ġb ut</w>
|
272 |
+
r an
|
273 |
+
ic al</w>
|
274 |
+
Ġfir st</w>
|
275 |
+
Ġd e
|
276 |
+
Ġin t
|
277 |
+
Ġ ro
|
278 |
+
s o</w>
|
279 |
+
ĠâĢ ĵ</w>
|
280 |
+
Ġno t</w>
|
281 |
+
d ing</w>
|
282 |
+
f ter</w>
|
283 |
+
ur e</w>
|
284 |
+
Ġp ar
|
285 |
+
Ġ :</w>
|
286 |
+
i an</w>
|
287 |
+
Ġt w
|
288 |
+
ou ld</w>
|
289 |
+
Ġal so</w>
|
290 |
+
Ġi ts</w>
|
291 |
+
Ġw or
|
292 |
+
u m</w>
|
293 |
+
Ġo r</w>
|
294 |
+
os t</w>
|
295 |
+
0 0</w>
|
296 |
+
ou r
|
297 |
+
ar d</w>
|
298 |
+
Ġre s
|
299 |
+
m p
|
300 |
+
u e</w>
|
301 |
+
Ġa b
|
302 |
+
is h</w>
|
303 |
+
Ġcon t
|
304 |
+
Ġa d
|
305 |
+
ow n</w>
|
306 |
+
al l</w>
|
307 |
+
ou g
|
308 |
+
Ġh er</w>
|
309 |
+
as t</w>
|
310 |
+
Ġ en
|
311 |
+
om e</w>
|
312 |
+
al l
|
313 |
+
d ed</w>
|
314 |
+
o w</w>
|
315 |
+
Ġha ve</w>
|
316 |
+
Ġ us
|
317 |
+
ea r</w>
|
318 |
+
ac k</w>
|
319 |
+
d uc
|
320 |
+
i al</w>
|
321 |
+
s s
|
322 |
+
en ts</w>
|
323 |
+
a in</w>
|
324 |
+
t ing</w>
|
325 |
+
Ġon e</w>
|
326 |
+
es s
|
327 |
+
Ġh as</w>
|
328 |
+
igh t</w>
|
329 |
+
a v
|
330 |
+
Ġe v
|
331 |
+
ou t</w>
|
332 |
+
a y
|
333 |
+
en ce</w>
|
334 |
+
Ġbe en</w>
|
335 |
+
e w
|
336 |
+
Ġtw o</w>
|
337 |
+
Ġc l
|
338 |
+
d er</w>
|
339 |
+
im e</w>
|
340 |
+
k s</w>
|
341 |
+
es s</w>
|
342 |
+
is h
|
343 |
+
. @</w>
|
344 |
+
Ġ@ .@</w>
|
345 |
+
Ġp la
|
346 |
+
Ġp l
|
347 |
+
Ġo r
|
348 |
+
u p</w>
|
349 |
+
m ent</w>
|
350 |
+
ur ing</w>
|
351 |
+
ol l
|
352 |
+
ĠI n
|
353 |
+
Ġth is</w>
|
354 |
+
Ġb ec
|
355 |
+
Ġcom m
|
356 |
+
Ġd is
|
357 |
+
at er</w>
|
358 |
+
ag e</w>
|
359 |
+
Ġa pp
|
360 |
+
ou s</w>
|
361 |
+
e y</w>
|
362 |
+
i l</w>
|
363 |
+
p er
|
364 |
+
ĠA l
|
365 |
+
ion al</w>
|
366 |
+
l ud
|
367 |
+
el y</w>
|
368 |
+
t t
|
369 |
+
il e</w>
|
370 |
+
i z
|
371 |
+
Ġ j
|
372 |
+
Ġwh o</w>
|
373 |
+
Ġa g
|
374 |
+
i b
|
375 |
+
Ġthe y</w>
|
376 |
+
f or
|
377 |
+
Ġo v
|
378 |
+
at h
|
379 |
+
e g
|
380 |
+
Ġs c
|
381 |
+
i p
|
382 |
+
Ġ20 1
|
383 |
+
Ġ 3
|
384 |
+
Ġp er
|
385 |
+
or y</w>
|
386 |
+
Ġd es
|
387 |
+
id e</w>
|
388 |
+
Ġs er
|
389 |
+
s e</w>
|
390 |
+
ĠH e</w>
|
391 |
+
la nd</w>
|
392 |
+
at ions</w>
|
393 |
+
r ic
|
394 |
+
i t</w>
|
395 |
+
re s</w>
|
396 |
+
er ed</w>
|
397 |
+
Ġp re
|
398 |
+
ĠS h
|
399 |
+
an ce</w>
|
400 |
+
or t</w>
|
401 |
+
an t</w>
|
402 |
+
, @</w>
|
403 |
+
Ġ@ ,@</w>
|
404 |
+
el l</w>
|
405 |
+
Ġ Y
|
406 |
+
n ed</w>
|
407 |
+
el l
|
408 |
+
it e</w>
|
409 |
+
Ġinc lud
|
410 |
+
Ġre p
|
411 |
+
Ġa fter</w>
|
412 |
+
Ġs uc
|
413 |
+
re e</w>
|
414 |
+
an y</w>
|
415 |
+
i m</w>
|
416 |
+
or t
|
417 |
+
Ġ1 8
|
418 |
+
Ġs u
|
419 |
+
ad e</w>
|
420 |
+
ou r</w>
|
421 |
+
ĠU n
|
422 |
+
ĠI t</w>
|
423 |
+
i k
|
424 |
+
ĠM ar
|
425 |
+
em ber</w>
|
426 |
+
Ġ 1</w>
|
427 |
+
e en</w>
|
428 |
+
a nd</w>
|
429 |
+
Ġs ec
|
430 |
+
ic e</w>
|
431 |
+
Ġt ime</w>
|
432 |
+
ĠA n
|
433 |
+
Ġint o</w>
|
434 |
+
Ġf in
|
435 |
+
Ġo ther</w>
|
436 |
+
Ġa tt
|
437 |
+
il l</w>
|
438 |
+
re n
|
439 |
+
ac h
|
440 |
+
as s
|
441 |
+
er al</w>
|
442 |
+
es e</w>
|
443 |
+
s h
|
444 |
+
al s</w>
|
445 |
+
it ion</w>
|
446 |
+
oug h</w>
|
447 |
+
l es</w>
|
448 |
+
am p
|
449 |
+
Ġw ould</w>
|
450 |
+
Ġm ore</w>
|
451 |
+
ro ug
|
452 |
+
ri b
|
453 |
+
er y</w>
|
454 |
+
ac e</w>
|
455 |
+
Ġ A</w>
|
456 |
+
Ġpla y
|
457 |
+
it ed</w>
|
458 |
+
k ed</w>
|
459 |
+
is t</w>
|
460 |
+
i ed</w>
|
461 |
+
Ġ 2</w>
|
462 |
+
as ed</w>
|
463 |
+
ing s</w>
|
464 |
+
an g
|
465 |
+
a m</w>
|
466 |
+
i p</w>
|
467 |
+
Ġb o
|
468 |
+
ab le</w>
|
469 |
+
t y</w>
|
470 |
+
Ġch ar
|
471 |
+
Ġc ent
|
472 |
+
et w
|
473 |
+
at es</w>
|
474 |
+
ro p
|
475 |
+
Ġ I</w>
|
476 |
+
u nd</w>
|
477 |
+
ĠA m
|
478 |
+
c es</w>
|
479 |
+
o in
|
480 |
+
Ġin ter
|
481 |
+
u p
|
482 |
+
c t
|
483 |
+
on e</w>
|
484 |
+
Ġt ra
|
485 |
+
an t
|
486 |
+
ec t
|
487 |
+
Ġal l</w>
|
488 |
+
e f
|
489 |
+
Ġcon s
|
490 |
+
ub l
|
491 |
+
n ing</w>
|
492 |
+
an s</w>
|
493 |
+
Ġf e
|
494 |
+
us t</w>
|
495 |
+
Ġ 0
|
496 |
+
Ġre m
|
497 |
+
as e</w>
|
498 |
+
on g
|
499 |
+
Ġwh en</w>
|
500 |
+
e b
|
501 |
+
ĠW h
|
502 |
+
Ġe ar
|
503 |
+
ev er</w>
|
504 |
+
Ġov er</w>
|
505 |
+
Ġk n
|
506 |
+
a us
|
507 |
+
Ġp os
|
508 |
+
a d</w>
|
509 |
+
er m
|
510 |
+
Ġsh e</w>
|
511 |
+
Ġ ra
|
512 |
+
Ġd uring</w>
|
513 |
+
as on</w>
|
514 |
+
v i
|
515 |
+
Ġex p
|
516 |
+
Ġl ea
|
517 |
+
Ġ el
|
518 |
+
Ġ 4
|
519 |
+
Ġon ly</w>
|
520 |
+
o nd</w>
|
521 |
+
Ġd ec
|
522 |
+
Ġac c
|
523 |
+
Ġo ff
|
524 |
+
is s
|
525 |
+
Ġf l
|
526 |
+
ĠE n
|
527 |
+
o t</w>
|
528 |
+
en s
|
529 |
+
os e</w>
|
530 |
+
ak e</w>
|
531 |
+
o m</w>
|
532 |
+
Ġs ev
|
533 |
+
ac h</w>
|
534 |
+
etw een</w>
|
535 |
+
er n
|
536 |
+
Ġ 3</w>
|
537 |
+
Ġp r
|
538 |
+
Ġg ro
|
539 |
+
r uc
|
540 |
+
Ġd i
|
541 |
+
Ġ19 9
|
542 |
+
ĠA r
|
543 |
+
Ġg ame</w>
|
544 |
+
Ġh im</w>
|
545 |
+
oo k</w>
|
546 |
+
Ġ up</w>
|
547 |
+
Ġab out</w>
|
548 |
+
Ġre l
|
549 |
+
for m
|
550 |
+
Ġth ree</w>
|
551 |
+
at t
|
552 |
+
ĠC om
|
553 |
+
Ġs a
|
554 |
+
ear s</w>
|
555 |
+
Ġ 5
|
556 |
+
r y</w>
|
557 |
+
Ġi mp
|
558 |
+
Ġm ost</w>
|
559 |
+
f er
|
560 |
+
Ġp res
|
561 |
+
Ġf il
|
562 |
+
Ġb etween</w>
|
563 |
+
Ġbe g
|
564 |
+
p h
|
565 |
+
or s</w>
|
566 |
+
Ġth an</w>
|
567 |
+
Ġrec or
|
568 |
+
o b
|
569 |
+
er ic
|
570 |
+
at ing</w>
|
571 |
+
Ġth roug
|
572 |
+
k ing</w>
|
573 |
+
Ġo ut</w>
|
574 |
+
Ġn um
|
575 |
+
oo d</w>
|
576 |
+
oll ow
|
577 |
+
ac t
|
578 |
+
u il
|
579 |
+
Ġc re
|
580 |
+
ol og
|
581 |
+
at ional</w>
|
582 |
+
Ġpro duc
|
583 |
+
Ġwh ile</w>
|
584 |
+
Ġl ater</w>
|
585 |
+
Ġw rit
|
586 |
+
e x
|
587 |
+
Ġst ar
|
588 |
+
Ġsp ec
|
589 |
+
e e
|
590 |
+
ish ed</w>
|
591 |
+
Ġre g
|
592 |
+
is ion</w>
|
593 |
+
ou th</w>
|
594 |
+
Ġre le
|
595 |
+
Ġa ss
|
596 |
+
Ġse ason</w>
|
597 |
+
Ġm ade</w>
|
598 |
+
il y</w>
|
599 |
+
r u
|
600 |
+
o y
|
601 |
+
t ur
|
602 |
+
t e</w>
|
603 |
+
Ġ qu
|
604 |
+
Ġm ov
|
605 |
+
ur y</w>
|
606 |
+
ĠAm eric
|
607 |
+
em ent</w>
|
608 |
+
c c
|
609 |
+
ou nd</w>
|
610 |
+
Ġl ar
|
611 |
+
Ġfor m
|
612 |
+
ec t</w>
|
613 |
+
Ġde f
|
614 |
+
Ġm us
|
615 |
+
ĠP ar
|
616 |
+
Ġm e
|
617 |
+
Ġs ub
|
618 |
+
w ay</w>
|
619 |
+
o p</w>
|
620 |
+
o h
|
621 |
+
el d</w>
|
622 |
+
i e</w>
|
623 |
+
em p
|
624 |
+
am es</w>
|
625 |
+
er n</w>
|
626 |
+
Ġn or
|
627 |
+
iv ed</w>
|
628 |
+
ev el
|
629 |
+
Ġsuc h</w>
|
630 |
+
ar ds</w>
|
631 |
+
Ġin d
|
632 |
+
ik e</w>
|
633 |
+
Ġg en
|
634 |
+
er t
|
635 |
+
Ġy ear</w>
|
636 |
+
Ġus ed</w>
|
637 |
+
Ġn ew</w>
|
638 |
+
Ġ 5</w>
|
639 |
+
Ġal b
|
640 |
+
s p
|
641 |
+
y p
|
642 |
+
Ġwit h
|
643 |
+
Ġwh ere</w>
|
644 |
+
ic s</w>
|
645 |
+
ĠTh is</w>
|
646 |
+
Ġthe m</w>
|
647 |
+
w n</w>
|
tokenizer_2/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer_2/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"tokenizer_class": "CLIPTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer_2/vocab.json
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"!": 2,
|
3 |
+
"!</w>": 345,
|
4 |
+
"\"": 3,
|
5 |
+
"\"</w>": 344,
|
6 |
+
"#": 4,
|
7 |
+
"#</w>": 325,
|
8 |
+
"$": 5,
|
9 |
+
"$</w>": 348,
|
10 |
+
"%": 6,
|
11 |
+
"%</w>": 351,
|
12 |
+
"&": 7,
|
13 |
+
"&</w>": 352,
|
14 |
+
"'": 8,
|
15 |
+
"'</w>": 296,
|
16 |
+
"(": 9,
|
17 |
+
"(</w>": 318,
|
18 |
+
")": 10,
|
19 |
+
")</w>": 330,
|
20 |
+
"*": 11,
|
21 |
+
"*</w>": 327,
|
22 |
+
"+": 12,
|
23 |
+
"+</w>": 341,
|
24 |
+
",": 13,
|
25 |
+
",</w>": 279,
|
26 |
+
",@</w>": 754,
|
27 |
+
"-": 14,
|
28 |
+
"-</w>": 276,
|
29 |
+
"-@</w>": 439,
|
30 |
+
".": 15,
|
31 |
+
".</w>": 253,
|
32 |
+
".@</w>": 695,
|
33 |
+
"/": 16,
|
34 |
+
"/</w>": 350,
|
35 |
+
"0": 17,
|
36 |
+
"00</w>": 647,
|
37 |
+
"0</w>": 216,
|
38 |
+
"1": 18,
|
39 |
+
"1</w>": 222,
|
40 |
+
"2": 19,
|
41 |
+
"2</w>": 231,
|
42 |
+
"3": 20,
|
43 |
+
"3</w>": 243,
|
44 |
+
"4": 21,
|
45 |
+
"4</w>": 233,
|
46 |
+
"5": 22,
|
47 |
+
"5</w>": 240,
|
48 |
+
"6": 23,
|
49 |
+
"6</w>": 226,
|
50 |
+
"7": 24,
|
51 |
+
"7</w>": 215,
|
52 |
+
"8": 25,
|
53 |
+
"8</w>": 236,
|
54 |
+
"9": 26,
|
55 |
+
"9</w>": 242,
|
56 |
+
":": 27,
|
57 |
+
":</w>": 353,
|
58 |
+
";": 28,
|
59 |
+
";</w>": 317,
|
60 |
+
"<": 29,
|
61 |
+
"<</w>": 340,
|
62 |
+
"<|endoftext|>": 1,
|
63 |
+
"<|startoftext|>": 0,
|
64 |
+
"=": 30,
|
65 |
+
"=</w>": 342,
|
66 |
+
">": 31,
|
67 |
+
"></w>": 300,
|
68 |
+
"?": 32,
|
69 |
+
"?</w>": 346,
|
70 |
+
"@": 33,
|
71 |
+
"@</w>": 320,
|
72 |
+
"A": 34,
|
73 |
+
"A</w>": 227,
|
74 |
+
"B": 35,
|
75 |
+
"B</w>": 258,
|
76 |
+
"C": 36,
|
77 |
+
"C</w>": 239,
|
78 |
+
"D": 37,
|
79 |
+
"D</w>": 255,
|
80 |
+
"E": 38,
|
81 |
+
"E</w>": 246,
|
82 |
+
"F": 39,
|
83 |
+
"F</w>": 213,
|
84 |
+
"G": 40,
|
85 |
+
"G</w>": 283,
|
86 |
+
"H": 41,
|
87 |
+
"H</w>": 219,
|
88 |
+
"I": 42,
|
89 |
+
"I</w>": 237,
|
90 |
+
"J": 43,
|
91 |
+
"J</w>": 251,
|
92 |
+
"K": 44,
|
93 |
+
"K</w>": 254,
|
94 |
+
"L": 45,
|
95 |
+
"L</w>": 218,
|
96 |
+
"M": 46,
|
97 |
+
"M</w>": 234,
|
98 |
+
"N": 47,
|
99 |
+
"N</w>": 238,
|
100 |
+
"O": 48,
|
101 |
+
"O</w>": 265,
|
102 |
+
"P": 49,
|
103 |
+
"P</w>": 245,
|
104 |
+
"Q": 50,
|
105 |
+
"Q</w>": 309,
|
106 |
+
"R": 51,
|
107 |
+
"R</w>": 264,
|
108 |
+
"S": 52,
|
109 |
+
"S</w>": 230,
|
110 |
+
"T": 53,
|
111 |
+
"T</w>": 235,
|
112 |
+
"U": 54,
|
113 |
+
"U</w>": 268,
|
114 |
+
"V": 55,
|
115 |
+
"V</w>": 248,
|
116 |
+
"W": 56,
|
117 |
+
"W</w>": 274,
|
118 |
+
"X": 57,
|
119 |
+
"X</w>": 263,
|
120 |
+
"Y": 58,
|
121 |
+
"Y</w>": 310,
|
122 |
+
"Z": 59,
|
123 |
+
"Z</w>": 207,
|
124 |
+
"[": 60,
|
125 |
+
"[</w>": 270,
|
126 |
+
"\\": 61,
|
127 |
+
"\\</w>": 338,
|
128 |
+
"]": 62,
|
129 |
+
"]</w>": 289,
|
130 |
+
"^": 63,
|
131 |
+
"^</w>": 331,
|
132 |
+
"_": 64,
|
133 |
+
"_</w>": 334,
|
134 |
+
"`": 65,
|
135 |
+
"`</w>": 347,
|
136 |
+
"a": 66,
|
137 |
+
"a</w>": 197,
|
138 |
+
"ab": 555,
|
139 |
+
"able</w>": 820,
|
140 |
+
"ac": 420,
|
141 |
+
"ace</w>": 806,
|
142 |
+
"ach": 791,
|
143 |
+
"ach</w>": 885,
|
144 |
+
"ack</w>": 670,
|
145 |
+
"act": 929,
|
146 |
+
"ad": 508,
|
147 |
+
"ad</w>": 860,
|
148 |
+
"ade</w>": 771,
|
149 |
+
"ag": 511,
|
150 |
+
"age</w>": 710,
|
151 |
+
"ain": 568,
|
152 |
+
"ain</w>": 675,
|
153 |
+
"ak": 577,
|
154 |
+
"ake</w>": 882,
|
155 |
+
"al": 397,
|
156 |
+
"al</w>": 405,
|
157 |
+
"all": 664,
|
158 |
+
"all</w>": 658,
|
159 |
+
"ally</w>": 588,
|
160 |
+
"als</w>": 796,
|
161 |
+
"am": 426,
|
162 |
+
"am</w>": 817,
|
163 |
+
"ame</w>": 552,
|
164 |
+
"ames</w>": 976,
|
165 |
+
"amp": 800,
|
166 |
+
"an": 384,
|
167 |
+
"an</w>": 425,
|
168 |
+
"ance</w>": 751,
|
169 |
+
"and": 609,
|
170 |
+
"and</w>": 780,
|
171 |
+
"ang": 816,
|
172 |
+
"ans</w>": 844,
|
173 |
+
"ant": 837,
|
174 |
+
"ant</w>": 753,
|
175 |
+
"any</w>": 766,
|
176 |
+
"ap": 586,
|
177 |
+
"ar": 376,
|
178 |
+
"ar</w>": 579,
|
179 |
+
"ard</w>": 649,
|
180 |
+
"ards</w>": 982,
|
181 |
+
"ary</w>": 611,
|
182 |
+
"as": 416,
|
183 |
+
"as</w>": 404,
|
184 |
+
"ase</w>": 849,
|
185 |
+
"ased</w>": 814,
|
186 |
+
"ason</w>": 865,
|
187 |
+
"ass": 792,
|
188 |
+
"ast</w>": 661,
|
189 |
+
"at": 372,
|
190 |
+
"at</w>": 434,
|
191 |
+
"ate</w>": 541,
|
192 |
+
"ated</w>": 543,
|
193 |
+
"ater</w>": 709,
|
194 |
+
"ates</w>": 825,
|
195 |
+
"ath": 730,
|
196 |
+
"ating</w>": 922,
|
197 |
+
"ation</w>": 497,
|
198 |
+
"ational</w>": 933,
|
199 |
+
"ations</w>": 744,
|
200 |
+
"att": 903,
|
201 |
+
"aus": 858,
|
202 |
+
"av": 681,
|
203 |
+
"ay": 684,
|
204 |
+
"ay</w>": 523,
|
205 |
+
"b": 67,
|
206 |
+
"b</w>": 212,
|
207 |
+
"ber</w>": 593,
|
208 |
+
"c": 68,
|
209 |
+
"c</w>": 224,
|
210 |
+
"cc": 960,
|
211 |
+
"ce</w>": 496,
|
212 |
+
"ces</w>": 830,
|
213 |
+
"ch": 520,
|
214 |
+
"ch</w>": 603,
|
215 |
+
"ct": 834,
|
216 |
+
"d": 69,
|
217 |
+
"d</w>": 196,
|
218 |
+
"ded</w>": 665,
|
219 |
+
"der</w>": 690,
|
220 |
+
"ding</w>": 633,
|
221 |
+
"ds</w>": 530,
|
222 |
+
"duc": 671,
|
223 |
+
"e": 70,
|
224 |
+
"e</w>": 195,
|
225 |
+
"ea": 471,
|
226 |
+
"ear": 596,
|
227 |
+
"ear</w>": 669,
|
228 |
+
"ears</w>": 906,
|
229 |
+
"eb": 852,
|
230 |
+
"ec": 418,
|
231 |
+
"ect": 838,
|
232 |
+
"ect</w>": 964,
|
233 |
+
"ed": 563,
|
234 |
+
"ed</w>": 362,
|
235 |
+
"ee": 941,
|
236 |
+
"een</w>": 779,
|
237 |
+
"ef": 840,
|
238 |
+
"eg": 731,
|
239 |
+
"el": 407,
|
240 |
+
"el</w>": 610,
|
241 |
+
"eld</w>": 973,
|
242 |
+
"ell": 759,
|
243 |
+
"ell</w>": 756,
|
244 |
+
"ely</w>": 719,
|
245 |
+
"em": 455,
|
246 |
+
"ember</w>": 777,
|
247 |
+
"ement</w>": 959,
|
248 |
+
"emp": 975,
|
249 |
+
"en": 375,
|
250 |
+
"en</w>": 427,
|
251 |
+
"ence</w>": 685,
|
252 |
+
"ens": 880,
|
253 |
+
"ent": 478,
|
254 |
+
"ent</w>": 468,
|
255 |
+
"ents</w>": 674,
|
256 |
+
"ep": 545,
|
257 |
+
"er": 364,
|
258 |
+
"er</w>": 374,
|
259 |
+
"eral</w>": 793,
|
260 |
+
"ere</w>": 481,
|
261 |
+
"ered</w>": 748,
|
262 |
+
"eric": 921,
|
263 |
+
"erm": 861,
|
264 |
+
"ern": 887,
|
265 |
+
"ern</w>": 977,
|
266 |
+
"ers": 598,
|
267 |
+
"ers</w>": 486,
|
268 |
+
"ert": 986,
|
269 |
+
"ery</w>": 805,
|
270 |
+
"es": 402,
|
271 |
+
"es</w>": 388,
|
272 |
+
"ese</w>": 794,
|
273 |
+
"ess": 678,
|
274 |
+
"ess</w>": 693,
|
275 |
+
"est": 606,
|
276 |
+
"est</w>": 584,
|
277 |
+
"et": 460,
|
278 |
+
"et</w>": 594,
|
279 |
+
"etw": 824,
|
280 |
+
"etween</w>": 886,
|
281 |
+
"ev": 493,
|
282 |
+
"evel": 980,
|
283 |
+
"ever</w>": 855,
|
284 |
+
"ew": 687,
|
285 |
+
"ew</w>": 612,
|
286 |
+
"ex": 938,
|
287 |
+
"ey</w>": 713,
|
288 |
+
"f": 71,
|
289 |
+
"f</w>": 209,
|
290 |
+
"fer": 911,
|
291 |
+
"ff": 587,
|
292 |
+
"for": 728,
|
293 |
+
"form": 901,
|
294 |
+
"fter</w>": 634,
|
295 |
+
"g": 72,
|
296 |
+
"g</w>": 214,
|
297 |
+
"ge</w>": 592,
|
298 |
+
"h": 73,
|
299 |
+
"h</w>": 203,
|
300 |
+
"i": 74,
|
301 |
+
"i</w>": 205,
|
302 |
+
"ia</w>": 605,
|
303 |
+
"ial</w>": 672,
|
304 |
+
"ian</w>": 638,
|
305 |
+
"ib": 726,
|
306 |
+
"ic": 395,
|
307 |
+
"ic</w>": 510,
|
308 |
+
"ical</w>": 625,
|
309 |
+
"ice</w>": 782,
|
310 |
+
"ich</w>": 561,
|
311 |
+
"ics</w>": 996,
|
312 |
+
"id": 463,
|
313 |
+
"id</w>": 613,
|
314 |
+
"ide</w>": 739,
|
315 |
+
"ie</w>": 974,
|
316 |
+
"ied</w>": 812,
|
317 |
+
"ies</w>": 516,
|
318 |
+
"if": 524,
|
319 |
+
"ig": 444,
|
320 |
+
"igh": 537,
|
321 |
+
"ight</w>": 680,
|
322 |
+
"ik": 775,
|
323 |
+
"ike</w>": 984,
|
324 |
+
"il": 406,
|
325 |
+
"il</w>": 714,
|
326 |
+
"ile</w>": 721,
|
327 |
+
"ill": 608,
|
328 |
+
"ill</w>": 789,
|
329 |
+
"ily</w>": 950,
|
330 |
+
"im": 469,
|
331 |
+
"im</w>": 767,
|
332 |
+
"ime</w>": 691,
|
333 |
+
"in": 358,
|
334 |
+
"in</w>": 501,
|
335 |
+
"ine</w>": 607,
|
336 |
+
"ing": 557,
|
337 |
+
"ing</w>": 383,
|
338 |
+
"ings</w>": 815,
|
339 |
+
"ion": 472,
|
340 |
+
"ion</w>": 408,
|
341 |
+
"ional</w>": 717,
|
342 |
+
"ions</w>": 540,
|
343 |
+
"ip": 733,
|
344 |
+
"ip</w>": 818,
|
345 |
+
"ir": 453,
|
346 |
+
"ir</w>": 554,
|
347 |
+
"is": 393,
|
348 |
+
"is</w>": 441,
|
349 |
+
"ish": 694,
|
350 |
+
"ish</w>": 654,
|
351 |
+
"ished</w>": 942,
|
352 |
+
"ision</w>": 944,
|
353 |
+
"iss": 876,
|
354 |
+
"ist": 550,
|
355 |
+
"ist</w>": 811,
|
356 |
+
"it": 378,
|
357 |
+
"it</w>": 746,
|
358 |
+
"ite</w>": 760,
|
359 |
+
"ited</w>": 809,
|
360 |
+
"ition</w>": 797,
|
361 |
+
"ity</w>": 542,
|
362 |
+
"iv": 435,
|
363 |
+
"ive</w>": 549,
|
364 |
+
"ived</w>": 979,
|
365 |
+
"iz": 722,
|
366 |
+
"j": 75,
|
367 |
+
"j</w>": 288,
|
368 |
+
"k": 76,
|
369 |
+
"k</w>": 210,
|
370 |
+
"ked</w>": 810,
|
371 |
+
"king</w>": 924,
|
372 |
+
"ks</w>": 692,
|
373 |
+
"l": 77,
|
374 |
+
"l</w>": 201,
|
375 |
+
"la": 467,
|
376 |
+
"land</w>": 743,
|
377 |
+
"ld</w>": 559,
|
378 |
+
"le": 536,
|
379 |
+
"le</w>": 465,
|
380 |
+
"les</w>": 799,
|
381 |
+
"lud": 718,
|
382 |
+
"ly</w>": 433,
|
383 |
+
"m": 78,
|
384 |
+
"m</w>": 202,
|
385 |
+
"ment</w>": 701,
|
386 |
+
"mp": 651,
|
387 |
+
"n": 79,
|
388 |
+
"n</w>": 199,
|
389 |
+
"nd</w>": 369,
|
390 |
+
"ned</w>": 758,
|
391 |
+
"ning</w>": 843,
|
392 |
+
"o": 80,
|
393 |
+
"o</w>": 198,
|
394 |
+
"ob": 920,
|
395 |
+
"oc": 534,
|
396 |
+
"od": 575,
|
397 |
+
"og": 604,
|
398 |
+
"oh": 972,
|
399 |
+
"oin": 831,
|
400 |
+
"ol": 428,
|
401 |
+
"oll": 703,
|
402 |
+
"ollow": 928,
|
403 |
+
"olog": 932,
|
404 |
+
"om": 419,
|
405 |
+
"om</w>": 883,
|
406 |
+
"ome</w>": 663,
|
407 |
+
"on": 382,
|
408 |
+
"on</w>": 390,
|
409 |
+
"ond</w>": 872,
|
410 |
+
"one</w>": 835,
|
411 |
+
"ong": 850,
|
412 |
+
"ong</w>": 582,
|
413 |
+
"oo": 517,
|
414 |
+
"ood</w>": 927,
|
415 |
+
"ook</w>": 897,
|
416 |
+
"op": 531,
|
417 |
+
"op</w>": 971,
|
418 |
+
"or": 377,
|
419 |
+
"or</w>": 424,
|
420 |
+
"ore</w>": 571,
|
421 |
+
"ors</w>": 917,
|
422 |
+
"ort": 768,
|
423 |
+
"ort</w>": 752,
|
424 |
+
"ory</w>": 737,
|
425 |
+
"os": 447,
|
426 |
+
"ose</w>": 881,
|
427 |
+
"ost</w>": 646,
|
428 |
+
"ot": 600,
|
429 |
+
"ot</w>": 879,
|
430 |
+
"ou": 392,
|
431 |
+
"oug": 659,
|
432 |
+
"ough</w>": 798,
|
433 |
+
"ould</w>": 640,
|
434 |
+
"oun": 553,
|
435 |
+
"ound</w>": 961,
|
436 |
+
"our": 648,
|
437 |
+
"our</w>": 772,
|
438 |
+
"ous</w>": 712,
|
439 |
+
"out</w>": 683,
|
440 |
+
"outh</w>": 945,
|
441 |
+
"ov": 515,
|
442 |
+
"ow": 461,
|
443 |
+
"ow</w>": 666,
|
444 |
+
"own</w>": 657,
|
445 |
+
"oy": 952,
|
446 |
+
"p": 81,
|
447 |
+
"p</w>": 217,
|
448 |
+
"per": 715,
|
449 |
+
"ph": 916,
|
450 |
+
"pp": 518,
|
451 |
+
"q": 82,
|
452 |
+
"q</w>": 280,
|
453 |
+
"qu": 546,
|
454 |
+
"r": 83,
|
455 |
+
"r</w>": 204,
|
456 |
+
"ra": 457,
|
457 |
+
"ran": 624,
|
458 |
+
"re": 367,
|
459 |
+
"ree</w>": 765,
|
460 |
+
"ren": 790,
|
461 |
+
"res": 572,
|
462 |
+
"res</w>": 747,
|
463 |
+
"ri": 487,
|
464 |
+
"rib": 804,
|
465 |
+
"ric": 745,
|
466 |
+
"rit": 589,
|
467 |
+
"ro": 385,
|
468 |
+
"rom</w>": 498,
|
469 |
+
"rop": 826,
|
470 |
+
"roug": 803,
|
471 |
+
"ru": 951,
|
472 |
+
"ruc": 891,
|
473 |
+
"ry</w>": 908,
|
474 |
+
"s": 84,
|
475 |
+
"s</w>": 206,
|
476 |
+
"se</w>": 741,
|
477 |
+
"sh": 795,
|
478 |
+
"so</w>": 630,
|
479 |
+
"sp": 992,
|
480 |
+
"ss": 673,
|
481 |
+
"st": 519,
|
482 |
+
"st</w>": 528,
|
483 |
+
"t": 85,
|
484 |
+
"t</w>": 208,
|
485 |
+
"te</w>": 954,
|
486 |
+
"ted</w>": 489,
|
487 |
+
"ter": 535,
|
488 |
+
"ter</w>": 505,
|
489 |
+
"th": 449,
|
490 |
+
"th</w>": 488,
|
491 |
+
"ther</w>": 576,
|
492 |
+
"ting</w>": 676,
|
493 |
+
"tion</w>": 570,
|
494 |
+
"tr": 619,
|
495 |
+
"ts</w>": 436,
|
496 |
+
"tt": 720,
|
497 |
+
"tur": 953,
|
498 |
+
"ty</w>": 821,
|
499 |
+
"u": 86,
|
500 |
+
"u</w>": 229,
|
501 |
+
"ub": 591,
|
502 |
+
"ubl": 842,
|
503 |
+
"uc": 490,
|
504 |
+
"ud": 538,
|
505 |
+
"ue</w>": 652,
|
506 |
+
"ug": 560,
|
507 |
+
"uil": 930,
|
508 |
+
"ul": 494,
|
509 |
+
"um": 532,
|
510 |
+
"um</w>": 644,
|
511 |
+
"un": 448,
|
512 |
+
"und</w>": 828,
|
513 |
+
"up": 833,
|
514 |
+
"up</w>": 700,
|
515 |
+
"ur": 413,
|
516 |
+
"ure</w>": 635,
|
517 |
+
"uring</w>": 702,
|
518 |
+
"ury</w>": 957,
|
519 |
+
"us": 438,
|
520 |
+
"us</w>": 622,
|
521 |
+
"ust</w>": 846,
|
522 |
+
"ut": 529,
|
523 |
+
"ut</w>": 527,
|
524 |
+
"v": 87,
|
525 |
+
"v</w>": 232,
|
526 |
+
"ve</w>": 567,
|
527 |
+
"vi": 866,
|
528 |
+
"w": 88,
|
529 |
+
"w</w>": 250,
|
530 |
+
"way</w>": 970,
|
531 |
+
"wn</w>": 999,
|
532 |
+
"x": 89,
|
533 |
+
"x</w>": 269,
|
534 |
+
"y": 90,
|
535 |
+
"y</w>": 211,
|
536 |
+
"yp": 993,
|
537 |
+
"z": 91,
|
538 |
+
"z</w>": 228,
|
539 |
+
"|": 92,
|
540 |
+
"|</w>": 304,
|
541 |
+
"}": 93,
|
542 |
+
"}</w>": 336,
|
543 |
+
"~": 94,
|
544 |
+
"~</w>": 343,
|
545 |
+
"¡": 95,
|
546 |
+
"¡</w>": 220,
|
547 |
+
"¢": 96,
|
548 |
+
"¢</w>": 306,
|
549 |
+
"£": 97,
|
550 |
+
"£</w>": 323,
|
551 |
+
"¤": 98,
|
552 |
+
"¤</w>": 292,
|
553 |
+
"¥": 99,
|
554 |
+
"¥</w>": 339,
|
555 |
+
"¦": 100,
|
556 |
+
"¦</w>": 303,
|
557 |
+
"§": 101,
|
558 |
+
"§</w>": 275,
|
559 |
+
"¨": 102,
|
560 |
+
"¨</w>": 282,
|
561 |
+
"©": 103,
|
562 |
+
"©</w>": 259,
|
563 |
+
"ª": 104,
|
564 |
+
"ª</w>": 286,
|
565 |
+
"«": 105,
|
566 |
+
"«</w>": 266,
|
567 |
+
"¬": 106,
|
568 |
+
"¬</w>": 319,
|
569 |
+
"®": 107,
|
570 |
+
"®</w>": 329,
|
571 |
+
"¯": 108,
|
572 |
+
"¯</w>": 287,
|
573 |
+
"°": 109,
|
574 |
+
"°</w>": 298,
|
575 |
+
"±": 110,
|
576 |
+
"±</w>": 200,
|
577 |
+
"²": 111,
|
578 |
+
"²</w>": 284,
|
579 |
+
"³": 112,
|
580 |
+
"³</w>": 272,
|
581 |
+
"´": 113,
|
582 |
+
"´</w>": 307,
|
583 |
+
"µ": 114,
|
584 |
+
"µ</w>": 261,
|
585 |
+
"¶": 115,
|
586 |
+
"¶</w>": 301,
|
587 |
+
"·": 116,
|
588 |
+
"·</w>": 326,
|
589 |
+
"¸": 117,
|
590 |
+
"¸</w>": 257,
|
591 |
+
"¹": 118,
|
592 |
+
"¹</w>": 241,
|
593 |
+
"º": 119,
|
594 |
+
"º</w>": 260,
|
595 |
+
"»": 120,
|
596 |
+
"»</w>": 247,
|
597 |
+
"¼": 121,
|
598 |
+
"¼</w>": 305,
|
599 |
+
"½": 122,
|
600 |
+
"½</w>": 294,
|
601 |
+
"¾": 123,
|
602 |
+
"¾</w>": 316,
|
603 |
+
"¿": 124,
|
604 |
+
"¿</w>": 271,
|
605 |
+
"Â": 125,
|
606 |
+
"Ã": 126,
|
607 |
+
"Ä": 127,
|
608 |
+
"Å": 128,
|
609 |
+
"Æ": 129,
|
610 |
+
"Ç": 130,
|
611 |
+
"È": 131,
|
612 |
+
"É": 132,
|
613 |
+
"Ê": 133,
|
614 |
+
"Ë": 134,
|
615 |
+
"Ì": 135,
|
616 |
+
"Í": 136,
|
617 |
+
"Î": 137,
|
618 |
+
"Ï": 138,
|
619 |
+
"Ð": 139,
|
620 |
+
"Ñ": 140,
|
621 |
+
"Ö": 141,
|
622 |
+
"×": 142,
|
623 |
+
"Ø": 143,
|
624 |
+
"Ù": 144,
|
625 |
+
"Ü": 145,
|
626 |
+
"à": 146,
|
627 |
+
"á": 147,
|
628 |
+
"â": 148,
|
629 |
+
"ã": 149,
|
630 |
+
"ä": 150,
|
631 |
+
"å": 151,
|
632 |
+
"æ": 152,
|
633 |
+
"ç": 153,
|
634 |
+
"è": 154,
|
635 |
+
"é": 155,
|
636 |
+
"ë": 156,
|
637 |
+
"ì": 157,
|
638 |
+
"ï": 158,
|
639 |
+
"Ċ": 159,
|
640 |
+
"Ċ</w>": 349,
|
641 |
+
"Ġ": 160,
|
642 |
+
"Ġ\"</w>": 401,
|
643 |
+
"Ġ'</w>": 431,
|
644 |
+
"Ġ(</w>": 475,
|
645 |
+
"Ġ)</w>": 474,
|
646 |
+
"Ġ,</w>": 360,
|
647 |
+
"Ġ.</w>": 365,
|
648 |
+
"Ġ0": 847,
|
649 |
+
"Ġ1": 411,
|
650 |
+
"Ġ18": 769,
|
651 |
+
"Ġ19": 492,
|
652 |
+
"Ġ199": 893,
|
653 |
+
"Ġ1</w>": 778,
|
654 |
+
"Ġ2": 462,
|
655 |
+
"Ġ20": 522,
|
656 |
+
"Ġ200": 620,
|
657 |
+
"Ġ201": 734,
|
658 |
+
"Ġ2</w>": 813,
|
659 |
+
"Ġ3": 735,
|
660 |
+
"Ġ3</w>": 888,
|
661 |
+
"Ġ4": 870,
|
662 |
+
"Ġ5": 907,
|
663 |
+
"Ġ5</w>": 990,
|
664 |
+
"Ġ:</w>": 637,
|
665 |
+
"Ġ;</w>": 615,
|
666 |
+
"Ġ</w>": 333,
|
667 |
+
"Ġ=</w>": 399,
|
668 |
+
"Ġ@": 417,
|
669 |
+
"Ġ@,@</w>": 755,
|
670 |
+
"Ġ@-@</w>": 440,
|
671 |
+
"Ġ@.@</w>": 696,
|
672 |
+
"ĠA": 409,
|
673 |
+
"ĠA</w>": 807,
|
674 |
+
"ĠAl": 716,
|
675 |
+
"ĠAm": 829,
|
676 |
+
"ĠAmeric": 958,
|
677 |
+
"ĠAn": 784,
|
678 |
+
"ĠAr": 894,
|
679 |
+
"ĠB": 432,
|
680 |
+
"ĠC": 410,
|
681 |
+
"ĠCh": 581,
|
682 |
+
"ĠCom": 904,
|
683 |
+
"ĠD": 464,
|
684 |
+
"ĠE": 500,
|
685 |
+
"ĠEn": 878,
|
686 |
+
"ĠF": 470,
|
687 |
+
"ĠG": 482,
|
688 |
+
"ĠH": 445,
|
689 |
+
"ĠHe</w>": 742,
|
690 |
+
"ĠI": 442,
|
691 |
+
"ĠI</w>": 827,
|
692 |
+
"ĠIn": 704,
|
693 |
+
"ĠIn</w>": 574,
|
694 |
+
"ĠIt</w>": 774,
|
695 |
+
"ĠJ": 491,
|
696 |
+
"ĠK": 548,
|
697 |
+
"ĠL": 484,
|
698 |
+
"ĠM": 423,
|
699 |
+
"ĠMar": 776,
|
700 |
+
"ĠN": 483,
|
701 |
+
"ĠO": 504,
|
702 |
+
"ĠP": 450,
|
703 |
+
"ĠPar": 967,
|
704 |
+
"ĠR": 459,
|
705 |
+
"ĠS": 403,
|
706 |
+
"ĠSh": 750,
|
707 |
+
"ĠSt": 590,
|
708 |
+
"ĠT": 396,
|
709 |
+
"ĠTh": 414,
|
710 |
+
"ĠThe</w>": 437,
|
711 |
+
"ĠThis</w>": 997,
|
712 |
+
"ĠU": 585,
|
713 |
+
"ĠUn": 773,
|
714 |
+
"ĠV": 617,
|
715 |
+
"ĠW": 479,
|
716 |
+
"ĠWh": 853,
|
717 |
+
"ĠY": 757,
|
718 |
+
"Ġa": 356,
|
719 |
+
"Ġa</w>": 394,
|
720 |
+
"Ġab": 653,
|
721 |
+
"Ġabout</w>": 899,
|
722 |
+
"Ġac": 583,
|
723 |
+
"Ġacc": 874,
|
724 |
+
"Ġad": 656,
|
725 |
+
"Ġafter</w>": 763,
|
726 |
+
"Ġag": 725,
|
727 |
+
"Ġal": 476,
|
728 |
+
"Ġalb": 991,
|
729 |
+
"Ġall</w>": 839,
|
730 |
+
"Ġalso</w>": 641,
|
731 |
+
"Ġan": 602,
|
732 |
+
"Ġan</w>": 562,
|
733 |
+
"Ġand</w>": 381,
|
734 |
+
"Ġapp": 711,
|
735 |
+
"Ġar": 507,
|
736 |
+
"Ġare</w>": 601,
|
737 |
+
"Ġas</w>": 454,
|
738 |
+
"Ġass": 947,
|
739 |
+
"Ġat</w>": 514,
|
740 |
+
"Ġatt": 788,
|
741 |
+
"Ġb": 371,
|
742 |
+
"Ġbe": 499,
|
743 |
+
"Ġbe</w>": 595,
|
744 |
+
"Ġbec": 706,
|
745 |
+
"Ġbeen</w>": 686,
|
746 |
+
"Ġbeg": 915,
|
747 |
+
"Ġbetween</w>": 914,
|
748 |
+
"Ġbo": 819,
|
749 |
+
"Ġbut</w>": 623,
|
750 |
+
"Ġby</w>": 473,
|
751 |
+
"Ġc": 368,
|
752 |
+
"Ġcent": 823,
|
753 |
+
"Ġch": 526,
|
754 |
+
"Ġchar": 822,
|
755 |
+
"Ġcl": 689,
|
756 |
+
"Ġcom": 509,
|
757 |
+
"Ġcomm": 707,
|
758 |
+
"Ġcomp": 616,
|
759 |
+
"Ġcon": 477,
|
760 |
+
"Ġcons": 841,
|
761 |
+
"Ġcont": 655,
|
762 |
+
"Ġcre": 931,
|
763 |
+
"Ġd": 387,
|
764 |
+
"Ġde": 627,
|
765 |
+
"Ġdec": 873,
|
766 |
+
"Ġdef": 965,
|
767 |
+
"Ġdes": 738,
|
768 |
+
"Ġdi": 892,
|
769 |
+
"Ġdis": 708,
|
770 |
+
"Ġduring</w>": 864,
|
771 |
+
"Ġe": 421,
|
772 |
+
"Ġear": 854,
|
773 |
+
"Ġel": 869,
|
774 |
+
"Ġen": 662,
|
775 |
+
"Ġev": 682,
|
776 |
+
"Ġex": 539,
|
777 |
+
"Ġexp": 867,
|
778 |
+
"Ġf": 370,
|
779 |
+
"Ġfe": 845,
|
780 |
+
"Ġfil": 913,
|
781 |
+
"Ġfin": 786,
|
782 |
+
"Ġfir": 599,
|
783 |
+
"Ġfirst</w>": 626,
|
784 |
+
"Ġfl": 877,
|
785 |
+
"Ġfor": 614,
|
786 |
+
"Ġfor</w>": 458,
|
787 |
+
"Ġform": 963,
|
788 |
+
"Ġfrom</w>": 503,
|
789 |
+
"Ġg": 430,
|
790 |
+
"Ġgame</w>": 895,
|
791 |
+
"Ġgen": 985,
|
792 |
+
"Ġgro": 890,
|
793 |
+
"Ġh": 380,
|
794 |
+
"Ġha": 485,
|
795 |
+
"Ġhad</w>": 566,
|
796 |
+
"Ġhas</w>": 679,
|
797 |
+
"Ġhave</w>": 667,
|
798 |
+
"Ġhe</w>": 558,
|
799 |
+
"Ġher</w>": 660,
|
800 |
+
"Ġhim</w>": 896,
|
801 |
+
"Ġhis</w>": 512,
|
802 |
+
"Ġi": 366,
|
803 |
+
"Ġimp": 909,
|
804 |
+
"Ġin": 429,
|
805 |
+
"Ġin</w>": 389,
|
806 |
+
"Ġinc": 618,
|
807 |
+
"Ġinclud": 761,
|
808 |
+
"Ġind": 983,
|
809 |
+
"Ġint": 628,
|
810 |
+
"Ġinter": 832,
|
811 |
+
"Ġinto</w>": 785,
|
812 |
+
"Ġis</w>": 480,
|
813 |
+
"Ġit</w>": 533,
|
814 |
+
"Ġits</w>": 642,
|
815 |
+
"Ġj": 723,
|
816 |
+
"Ġk": 564,
|
817 |
+
"Ġkn": 857,
|
818 |
+
"Ġl": 398,
|
819 |
+
"Ġlar": 962,
|
820 |
+
"Ġlater</w>": 936,
|
821 |
+
"Ġlea": 868,
|
822 |
+
"Ġm": 386,
|
823 |
+
"Ġmade</w>": 949,
|
824 |
+
"Ġme": 968,
|
825 |
+
"Ġmore</w>": 802,
|
826 |
+
"Ġmost</w>": 910,
|
827 |
+
"Ġmov": 956,
|
828 |
+
"Ġmus": 966,
|
829 |
+
"Ġn": 415,
|
830 |
+
"Ġnew</w>": 989,
|
831 |
+
"Ġno": 547,
|
832 |
+
"Ġnor": 978,
|
833 |
+
"Ġnot</w>": 632,
|
834 |
+
"Ġnum": 926,
|
835 |
+
"Ġo": 359,
|
836 |
+
"Ġof</w>": 373,
|
837 |
+
"Ġoff": 875,
|
838 |
+
"Ġon": 551,
|
839 |
+
"Ġon</w>": 456,
|
840 |
+
"Ġone</w>": 677,
|
841 |
+
"Ġonly</w>": 871,
|
842 |
+
"Ġor": 699,
|
843 |
+
"Ġor</w>": 645,
|
844 |
+
"Ġother</w>": 787,
|
845 |
+
"Ġout</w>": 925,
|
846 |
+
"Ġov": 729,
|
847 |
+
"Ġover</w>": 856,
|
848 |
+
"Ġp": 379,
|
849 |
+
"Ġpar": 636,
|
850 |
+
"Ġper": 736,
|
851 |
+
"Ġpl": 698,
|
852 |
+
"Ġpla": 697,
|
853 |
+
"Ġplay": 808,
|
854 |
+
"Ġpos": 859,
|
855 |
+
"Ġpr": 889,
|
856 |
+
"Ġpre": 749,
|
857 |
+
"Ġpres": 912,
|
858 |
+
"Ġpro": 506,
|
859 |
+
"Ġproduc": 934,
|
860 |
+
"Ġqu": 955,
|
861 |
+
"Ġr": 521,
|
862 |
+
"Ġra": 863,
|
863 |
+
"Ġre": 400,
|
864 |
+
"Ġrec": 597,
|
865 |
+
"Ġrecor": 919,
|
866 |
+
"Ġreg": 943,
|
867 |
+
"Ġrel": 900,
|
868 |
+
"Ġrele": 946,
|
869 |
+
"Ġrem": 848,
|
870 |
+
"Ġrep": 762,
|
871 |
+
"Ġres": 650,
|
872 |
+
"Ġro": 629,
|
873 |
+
"Ġs": 361,
|
874 |
+
"Ġsa": 905,
|
875 |
+
"Ġsc": 732,
|
876 |
+
"Ġse": 569,
|
877 |
+
"Ġseason</w>": 948,
|
878 |
+
"Ġsec": 781,
|
879 |
+
"Ġser": 740,
|
880 |
+
"Ġsev": 884,
|
881 |
+
"Ġsh": 513,
|
882 |
+
"Ġshe</w>": 862,
|
883 |
+
"Ġsp": 578,
|
884 |
+
"Ġspec": 940,
|
885 |
+
"Ġst": 446,
|
886 |
+
"Ġstar": 939,
|
887 |
+
"Ġsu": 770,
|
888 |
+
"Ġsub": 969,
|
889 |
+
"Ġsuc": 764,
|
890 |
+
"Ġsuch</w>": 981,
|
891 |
+
"Ġt": 354,
|
892 |
+
"Ġth": 355,
|
893 |
+
"Ġthan</w>": 918,
|
894 |
+
"Ġthat</w>": 452,
|
895 |
+
"Ġthe": 502,
|
896 |
+
"Ġthe</w>": 357,
|
897 |
+
"Ġtheir</w>": 621,
|
898 |
+
"Ġthem</w>": 998,
|
899 |
+
"Ġthey</w>": 727,
|
900 |
+
"Ġthis</w>": 705,
|
901 |
+
"Ġthree</w>": 902,
|
902 |
+
"Ġthroug": 923,
|
903 |
+
"Ġtime</w>": 783,
|
904 |
+
"Ġto</w>": 391,
|
905 |
+
"Ġtra": 836,
|
906 |
+
"Ġtw": 639,
|
907 |
+
"Ġtwo</w>": 688,
|
908 |
+
"Ġun": 544,
|
909 |
+
"Ġup</w>": 898,
|
910 |
+
"Ġus": 668,
|
911 |
+
"Ġused</w>": 988,
|
912 |
+
"Ġv": 495,
|
913 |
+
"Ġw": 363,
|
914 |
+
"Ġwas</w>": 422,
|
915 |
+
"Ġwere</w>": 525,
|
916 |
+
"Ġwh": 443,
|
917 |
+
"Ġwhen</w>": 851,
|
918 |
+
"Ġwhere</w>": 995,
|
919 |
+
"Ġwhich</w>": 573,
|
920 |
+
"Ġwhile</w>": 935,
|
921 |
+
"Ġwho</w>": 724,
|
922 |
+
"Ġwit": 451,
|
923 |
+
"Ġwith": 994,
|
924 |
+
"Ġwith</w>": 466,
|
925 |
+
"Ġwor": 643,
|
926 |
+
"Ġwould</w>": 801,
|
927 |
+
"Ġwrit": 937,
|
928 |
+
"Ġy": 580,
|
929 |
+
"Ġyear</w>": 987,
|
930 |
+
"Ġâ": 556,
|
931 |
+
"ĠâĢ": 565,
|
932 |
+
"ĠâĢĵ</w>": 631,
|
933 |
+
"ĠĊ</w>": 412,
|
934 |
+
"Ģ": 161,
|
935 |
+
"Ģ</w>": 223,
|
936 |
+
"ģ": 162,
|
937 |
+
"ģ</w>": 273,
|
938 |
+
"Ĥ": 163,
|
939 |
+
"Ĥ</w>": 262,
|
940 |
+
"ĥ": 164,
|
941 |
+
"ĥ</w>": 337,
|
942 |
+
"Ħ": 165,
|
943 |
+
"Ħ</w>": 278,
|
944 |
+
"ħ": 166,
|
945 |
+
"ħ</w>": 281,
|
946 |
+
"Ĩ": 167,
|
947 |
+
"Ĩ</w>": 308,
|
948 |
+
"ĩ": 168,
|
949 |
+
"ĩ</w>": 225,
|
950 |
+
"Ī": 169,
|
951 |
+
"Ī</w>": 221,
|
952 |
+
"ī": 170,
|
953 |
+
"ī</w>": 244,
|
954 |
+
"Ĭ": 171,
|
955 |
+
"Ĭ</w>": 315,
|
956 |
+
"ĭ": 172,
|
957 |
+
"ĭ</w>": 321,
|
958 |
+
"Į": 173,
|
959 |
+
"Į</w>": 324,
|
960 |
+
"į": 174,
|
961 |
+
"į</w>": 302,
|
962 |
+
"İ": 175,
|
963 |
+
"İ</w>": 249,
|
964 |
+
"ı": 176,
|
965 |
+
"ı</w>": 332,
|
966 |
+
"IJ": 177,
|
967 |
+
"IJ</w>": 295,
|
968 |
+
"ij": 178,
|
969 |
+
"ij</w>": 313,
|
970 |
+
"Ĵ": 179,
|
971 |
+
"Ĵ</w>": 328,
|
972 |
+
"ĵ": 180,
|
973 |
+
"ĵ</w>": 312,
|
974 |
+
"Ķ": 181,
|
975 |
+
"Ķ</w>": 256,
|
976 |
+
"ķ": 182,
|
977 |
+
"ķ</w>": 314,
|
978 |
+
"ĸ": 183,
|
979 |
+
"ĸ</w>": 277,
|
980 |
+
"Ĺ": 184,
|
981 |
+
"Ĺ</w>": 322,
|
982 |
+
"ĺ": 185,
|
983 |
+
"ĺ</w>": 285,
|
984 |
+
"Ļ": 186,
|
985 |
+
"Ļ</w>": 267,
|
986 |
+
"ļ": 187,
|
987 |
+
"ļ</w>": 290,
|
988 |
+
"Ľ": 188,
|
989 |
+
"Ľ</w>": 311,
|
990 |
+
"ľ": 189,
|
991 |
+
"ľ</w>": 299,
|
992 |
+
"Ŀ": 190,
|
993 |
+
"Ŀ</w>": 291,
|
994 |
+
"ŀ": 191,
|
995 |
+
"ŀ</w>": 293,
|
996 |
+
"Ł": 192,
|
997 |
+
"Ł</w>": 335,
|
998 |
+
"ł": 193,
|
999 |
+
"ł</w>": 252,
|
1000 |
+
"Ń": 194,
|
1001 |
+
"Ń</w>": 297
|
1002 |
+
}
|
unet/config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": "text_time",
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": 8,
|
8 |
+
"attention_head_dim": [
|
9 |
+
2,
|
10 |
+
4
|
11 |
+
],
|
12 |
+
"block_out_channels": [
|
13 |
+
32,
|
14 |
+
64
|
15 |
+
],
|
16 |
+
"center_input_sample": false,
|
17 |
+
"class_embed_type": null,
|
18 |
+
"class_embeddings_concat": false,
|
19 |
+
"conv_in_kernel": 3,
|
20 |
+
"conv_out_kernel": 3,
|
21 |
+
"cross_attention_dim": 64,
|
22 |
+
"cross_attention_norm": null,
|
23 |
+
"down_block_types": [
|
24 |
+
"DownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D"
|
26 |
+
],
|
27 |
+
"downsample_padding": 1,
|
28 |
+
"dual_cross_attention": false,
|
29 |
+
"encoder_hid_dim": null,
|
30 |
+
"encoder_hid_dim_type": null,
|
31 |
+
"flip_sin_to_cos": true,
|
32 |
+
"freq_shift": 0,
|
33 |
+
"in_channels": 4,
|
34 |
+
"layers_per_block": 2,
|
35 |
+
"mid_block_only_cross_attention": null,
|
36 |
+
"mid_block_scale_factor": 1,
|
37 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
38 |
+
"norm_eps": 1e-05,
|
39 |
+
"norm_num_groups": 32,
|
40 |
+
"num_attention_heads": null,
|
41 |
+
"num_class_embeds": null,
|
42 |
+
"only_cross_attention": false,
|
43 |
+
"out_channels": 4,
|
44 |
+
"projection_class_embeddings_input_dim": 80,
|
45 |
+
"resnet_out_scale_factor": 1.0,
|
46 |
+
"resnet_skip_time_act": false,
|
47 |
+
"resnet_time_scale_shift": "default",
|
48 |
+
"sample_size": 32,
|
49 |
+
"time_cond_proj_dim": null,
|
50 |
+
"time_embedding_act_fn": null,
|
51 |
+
"time_embedding_dim": null,
|
52 |
+
"time_embedding_type": "positional",
|
53 |
+
"timestep_post_act": null,
|
54 |
+
"transformer_layers_per_block": [
|
55 |
+
1,
|
56 |
+
2
|
57 |
+
],
|
58 |
+
"up_block_types": [
|
59 |
+
"CrossAttnUpBlock2D",
|
60 |
+
"UpBlock2D"
|
61 |
+
],
|
62 |
+
"upcast_attention": false,
|
63 |
+
"use_linear_projection": true
|
64 |
+
}
|
unet/diffusion_flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed31ac1c90efa34dc35ea81f5b15c1f04f52cba3cb0a965d6473dd81afeddfd
|
3 |
+
size 7919640
|
unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d6093265f73fe68d5f3f5ed18228bfa91fa23b11baaf9f7f9663b25cc605d26
|
3 |
+
size 8083273
|
unet/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b24b7a6214d413f104e91756d7bd08e5926f7906afb055d23dcd2d53e10469bb
|
3 |
+
size 9126212
|
unet/my_unet_model.py
ADDED
@@ -0,0 +1,1129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import (
|
33 |
+
GaussianFourierProjection,
|
34 |
+
ImageHintTimeEmbedding,
|
35 |
+
ImageProjection,
|
36 |
+
ImageTimeEmbedding,
|
37 |
+
PositionNet,
|
38 |
+
TextImageProjection,
|
39 |
+
TextImageTimeEmbedding,
|
40 |
+
TextTimeEmbedding,
|
41 |
+
TimestepEmbedding,
|
42 |
+
Timesteps,
|
43 |
+
)
|
44 |
+
from diffusers.models.modeling_utils import ModelMixin
|
45 |
+
from diffusers.models.unet_2d_blocks import (
|
46 |
+
UNetMidBlock2DCrossAttn,
|
47 |
+
UNetMidBlock2DSimpleCrossAttn,
|
48 |
+
get_down_block,
|
49 |
+
get_up_block,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class UNet2DConditionOutput(BaseOutput):
|
58 |
+
"""
|
59 |
+
The output of [`MyUNetModel`].
|
60 |
+
|
61 |
+
Args:
|
62 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
63 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
64 |
+
"""
|
65 |
+
|
66 |
+
sample: torch.FloatTensor = None
|
67 |
+
|
68 |
+
|
69 |
+
class MyUNetModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
70 |
+
r"""
|
71 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
72 |
+
shaped output.
|
73 |
+
|
74 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
75 |
+
for all models (such as downloading or saving).
|
76 |
+
|
77 |
+
Parameters:
|
78 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
79 |
+
Height and width of input/output sample.
|
80 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
81 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
82 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
83 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether to flip the sin to cos in the time embedding.
|
85 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
86 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
87 |
+
The tuple of downsample blocks to use.
|
88 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
89 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
90 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
91 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
92 |
+
The tuple of upsample blocks to use.
|
93 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
94 |
+
Whether to include self-attention in the basic transformer blocks, see
|
95 |
+
[`~models.attention.BasicTransformerBlock`].
|
96 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
97 |
+
The tuple of output channels for each block.
|
98 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
99 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
100 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
101 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
102 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
103 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
104 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
105 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
106 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
107 |
+
The dimension of the cross attention features.
|
108 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
109 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
110 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
111 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
112 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
113 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
114 |
+
dimension to `cross_attention_dim`.
|
115 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
116 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
117 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
118 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
119 |
+
num_attention_heads (`int`, *optional*):
|
120 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
121 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
122 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
123 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
124 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
125 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
126 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
127 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
128 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
129 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
130 |
+
Dimension for the timestep embeddings.
|
131 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
132 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
133 |
+
class conditioning with `class_embed_type` equal to `None`.
|
134 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
135 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
136 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
137 |
+
An optional override for the dimension of the projected time embedding.
|
138 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
139 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
140 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
141 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
142 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
143 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
144 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
145 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
146 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
147 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
148 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
149 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
150 |
+
embeddings with the class embeddings.
|
151 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
152 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
153 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
154 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
155 |
+
otherwise.
|
156 |
+
"""
|
157 |
+
|
158 |
+
_supports_gradient_checkpointing = True
|
159 |
+
|
160 |
+
@register_to_config
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
sample_size: Optional[int] = None,
|
164 |
+
in_channels: int = 4,
|
165 |
+
out_channels: int = 4,
|
166 |
+
center_input_sample: bool = False,
|
167 |
+
flip_sin_to_cos: bool = True,
|
168 |
+
freq_shift: int = 0,
|
169 |
+
down_block_types: Tuple[str] = (
|
170 |
+
"CrossAttnDownBlock2D",
|
171 |
+
"CrossAttnDownBlock2D",
|
172 |
+
"CrossAttnDownBlock2D",
|
173 |
+
"DownBlock2D",
|
174 |
+
),
|
175 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
176 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
177 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
178 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
179 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
180 |
+
downsample_padding: int = 1,
|
181 |
+
mid_block_scale_factor: float = 1,
|
182 |
+
dropout: float = 0.0,
|
183 |
+
act_fn: str = "silu",
|
184 |
+
norm_num_groups: Optional[int] = 32,
|
185 |
+
norm_eps: float = 1e-5,
|
186 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
187 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
188 |
+
encoder_hid_dim: Optional[int] = None,
|
189 |
+
encoder_hid_dim_type: Optional[str] = None,
|
190 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
191 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
192 |
+
dual_cross_attention: bool = False,
|
193 |
+
use_linear_projection: bool = False,
|
194 |
+
class_embed_type: Optional[str] = None,
|
195 |
+
addition_embed_type: Optional[str] = None,
|
196 |
+
addition_time_embed_dim: Optional[int] = None,
|
197 |
+
num_class_embeds: Optional[int] = None,
|
198 |
+
upcast_attention: bool = False,
|
199 |
+
resnet_time_scale_shift: str = "default",
|
200 |
+
resnet_skip_time_act: bool = False,
|
201 |
+
resnet_out_scale_factor: int = 1.0,
|
202 |
+
time_embedding_type: str = "positional",
|
203 |
+
time_embedding_dim: Optional[int] = None,
|
204 |
+
time_embedding_act_fn: Optional[str] = None,
|
205 |
+
timestep_post_act: Optional[str] = None,
|
206 |
+
time_cond_proj_dim: Optional[int] = None,
|
207 |
+
conv_in_kernel: int = 3,
|
208 |
+
conv_out_kernel: int = 3,
|
209 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
210 |
+
attention_type: str = "default",
|
211 |
+
class_embeddings_concat: bool = False,
|
212 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
213 |
+
cross_attention_norm: Optional[str] = None,
|
214 |
+
addition_embed_type_num_heads=64,
|
215 |
+
):
|
216 |
+
super().__init__()
|
217 |
+
|
218 |
+
self.sample_size = sample_size
|
219 |
+
|
220 |
+
if num_attention_heads is not None:
|
221 |
+
raise ValueError(
|
222 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
223 |
+
)
|
224 |
+
|
225 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
226 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
227 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
228 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
229 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
230 |
+
# which is why we correct for the naming here.
|
231 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
232 |
+
|
233 |
+
# Check inputs
|
234 |
+
if len(down_block_types) != len(up_block_types):
|
235 |
+
raise ValueError(
|
236 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if len(block_out_channels) != len(down_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
250 |
+
raise ValueError(
|
251 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
252 |
+
)
|
253 |
+
|
254 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
255 |
+
raise ValueError(
|
256 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
257 |
+
)
|
258 |
+
|
259 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
260 |
+
raise ValueError(
|
261 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
262 |
+
)
|
263 |
+
|
264 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
265 |
+
raise ValueError(
|
266 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
267 |
+
)
|
268 |
+
|
269 |
+
# input
|
270 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
271 |
+
self.conv_in = nn.Conv2d(
|
272 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
273 |
+
)
|
274 |
+
|
275 |
+
# time
|
276 |
+
if time_embedding_type == "fourier":
|
277 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
278 |
+
if time_embed_dim % 2 != 0:
|
279 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
280 |
+
self.time_proj = GaussianFourierProjection(
|
281 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
282 |
+
)
|
283 |
+
timestep_input_dim = time_embed_dim
|
284 |
+
elif time_embedding_type == "positional":
|
285 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
286 |
+
|
287 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
288 |
+
timestep_input_dim = block_out_channels[0]
|
289 |
+
else:
|
290 |
+
raise ValueError(
|
291 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
292 |
+
)
|
293 |
+
|
294 |
+
self.time_embedding = TimestepEmbedding(
|
295 |
+
timestep_input_dim,
|
296 |
+
time_embed_dim,
|
297 |
+
act_fn=act_fn,
|
298 |
+
post_act_fn=timestep_post_act,
|
299 |
+
cond_proj_dim=time_cond_proj_dim,
|
300 |
+
)
|
301 |
+
|
302 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
303 |
+
encoder_hid_dim_type = "text_proj"
|
304 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
305 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
306 |
+
|
307 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
308 |
+
raise ValueError(
|
309 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
310 |
+
)
|
311 |
+
|
312 |
+
if encoder_hid_dim_type == "text_proj":
|
313 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
314 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
315 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
316 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
317 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
318 |
+
self.encoder_hid_proj = TextImageProjection(
|
319 |
+
text_embed_dim=encoder_hid_dim,
|
320 |
+
image_embed_dim=cross_attention_dim,
|
321 |
+
cross_attention_dim=cross_attention_dim,
|
322 |
+
)
|
323 |
+
elif encoder_hid_dim_type == "image_proj":
|
324 |
+
# Kandinsky 2.2
|
325 |
+
self.encoder_hid_proj = ImageProjection(
|
326 |
+
image_embed_dim=encoder_hid_dim,
|
327 |
+
cross_attention_dim=cross_attention_dim,
|
328 |
+
)
|
329 |
+
elif encoder_hid_dim_type is not None:
|
330 |
+
raise ValueError(
|
331 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
self.encoder_hid_proj = None
|
335 |
+
|
336 |
+
# class embedding
|
337 |
+
if class_embed_type is None and num_class_embeds is not None:
|
338 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
339 |
+
elif class_embed_type == "timestep":
|
340 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
341 |
+
elif class_embed_type == "identity":
|
342 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
343 |
+
elif class_embed_type == "projection":
|
344 |
+
if projection_class_embeddings_input_dim is None:
|
345 |
+
raise ValueError(
|
346 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
347 |
+
)
|
348 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
349 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
350 |
+
# 2. it projects from an arbitrary input dimension.
|
351 |
+
#
|
352 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
353 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
354 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
355 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
356 |
+
elif class_embed_type == "simple_projection":
|
357 |
+
if projection_class_embeddings_input_dim is None:
|
358 |
+
raise ValueError(
|
359 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
360 |
+
)
|
361 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
362 |
+
else:
|
363 |
+
self.class_embedding = None
|
364 |
+
|
365 |
+
if addition_embed_type == "text":
|
366 |
+
if encoder_hid_dim is not None:
|
367 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
368 |
+
else:
|
369 |
+
text_time_embedding_from_dim = cross_attention_dim
|
370 |
+
|
371 |
+
self.add_embedding = TextTimeEmbedding(
|
372 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
373 |
+
)
|
374 |
+
elif addition_embed_type == "text_image":
|
375 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
376 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
377 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
378 |
+
self.add_embedding = TextImageTimeEmbedding(
|
379 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
380 |
+
)
|
381 |
+
elif addition_embed_type == "text_time":
|
382 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
383 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
384 |
+
elif addition_embed_type == "image":
|
385 |
+
# Kandinsky 2.2
|
386 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
387 |
+
elif addition_embed_type == "image_hint":
|
388 |
+
# Kandinsky 2.2 ControlNet
|
389 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
390 |
+
elif addition_embed_type is not None:
|
391 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
392 |
+
|
393 |
+
if time_embedding_act_fn is None:
|
394 |
+
self.time_embed_act = None
|
395 |
+
else:
|
396 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
397 |
+
|
398 |
+
self.down_blocks = nn.ModuleList([])
|
399 |
+
self.up_blocks = nn.ModuleList([])
|
400 |
+
|
401 |
+
if isinstance(only_cross_attention, bool):
|
402 |
+
if mid_block_only_cross_attention is None:
|
403 |
+
mid_block_only_cross_attention = only_cross_attention
|
404 |
+
|
405 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
406 |
+
|
407 |
+
if mid_block_only_cross_attention is None:
|
408 |
+
mid_block_only_cross_attention = False
|
409 |
+
|
410 |
+
if isinstance(num_attention_heads, int):
|
411 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
412 |
+
|
413 |
+
if isinstance(attention_head_dim, int):
|
414 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
415 |
+
|
416 |
+
if isinstance(cross_attention_dim, int):
|
417 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
418 |
+
|
419 |
+
if isinstance(layers_per_block, int):
|
420 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
421 |
+
|
422 |
+
if isinstance(transformer_layers_per_block, int):
|
423 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
424 |
+
|
425 |
+
if class_embeddings_concat:
|
426 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
427 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
428 |
+
# regular time embeddings
|
429 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
430 |
+
else:
|
431 |
+
blocks_time_embed_dim = time_embed_dim
|
432 |
+
|
433 |
+
# down
|
434 |
+
output_channel = block_out_channels[0]
|
435 |
+
for i, down_block_type in enumerate(down_block_types):
|
436 |
+
input_channel = output_channel
|
437 |
+
output_channel = block_out_channels[i]
|
438 |
+
is_final_block = i == len(block_out_channels) - 1
|
439 |
+
|
440 |
+
down_block = get_down_block(
|
441 |
+
down_block_type,
|
442 |
+
num_layers=layers_per_block[i],
|
443 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
444 |
+
in_channels=input_channel,
|
445 |
+
out_channels=output_channel,
|
446 |
+
temb_channels=blocks_time_embed_dim,
|
447 |
+
add_downsample=not is_final_block,
|
448 |
+
resnet_eps=norm_eps,
|
449 |
+
resnet_act_fn=act_fn,
|
450 |
+
resnet_groups=norm_num_groups,
|
451 |
+
cross_attention_dim=cross_attention_dim[i],
|
452 |
+
num_attention_heads=num_attention_heads[i],
|
453 |
+
downsample_padding=downsample_padding,
|
454 |
+
dual_cross_attention=dual_cross_attention,
|
455 |
+
use_linear_projection=use_linear_projection,
|
456 |
+
only_cross_attention=only_cross_attention[i],
|
457 |
+
upcast_attention=upcast_attention,
|
458 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
459 |
+
attention_type=attention_type,
|
460 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
461 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
462 |
+
cross_attention_norm=cross_attention_norm,
|
463 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
464 |
+
dropout=dropout,
|
465 |
+
)
|
466 |
+
self.down_blocks.append(down_block)
|
467 |
+
|
468 |
+
# mid
|
469 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
470 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
471 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
472 |
+
in_channels=block_out_channels[-1],
|
473 |
+
temb_channels=blocks_time_embed_dim,
|
474 |
+
dropout=dropout,
|
475 |
+
resnet_eps=norm_eps,
|
476 |
+
resnet_act_fn=act_fn,
|
477 |
+
output_scale_factor=mid_block_scale_factor,
|
478 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
479 |
+
cross_attention_dim=cross_attention_dim[-1],
|
480 |
+
num_attention_heads=num_attention_heads[-1],
|
481 |
+
resnet_groups=norm_num_groups,
|
482 |
+
dual_cross_attention=dual_cross_attention,
|
483 |
+
use_linear_projection=use_linear_projection,
|
484 |
+
upcast_attention=upcast_attention,
|
485 |
+
attention_type=attention_type,
|
486 |
+
)
|
487 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
488 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
489 |
+
in_channels=block_out_channels[-1],
|
490 |
+
temb_channels=blocks_time_embed_dim,
|
491 |
+
dropout=dropout,
|
492 |
+
resnet_eps=norm_eps,
|
493 |
+
resnet_act_fn=act_fn,
|
494 |
+
output_scale_factor=mid_block_scale_factor,
|
495 |
+
cross_attention_dim=cross_attention_dim[-1],
|
496 |
+
attention_head_dim=attention_head_dim[-1],
|
497 |
+
resnet_groups=norm_num_groups,
|
498 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
499 |
+
skip_time_act=resnet_skip_time_act,
|
500 |
+
only_cross_attention=mid_block_only_cross_attention,
|
501 |
+
cross_attention_norm=cross_attention_norm,
|
502 |
+
)
|
503 |
+
elif mid_block_type is None:
|
504 |
+
self.mid_block = None
|
505 |
+
else:
|
506 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
507 |
+
|
508 |
+
# count how many layers upsample the images
|
509 |
+
self.num_upsamplers = 0
|
510 |
+
|
511 |
+
# up
|
512 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
513 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
514 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
515 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
516 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
517 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
518 |
+
|
519 |
+
output_channel = reversed_block_out_channels[0]
|
520 |
+
for i, up_block_type in enumerate(up_block_types):
|
521 |
+
is_final_block = i == len(block_out_channels) - 1
|
522 |
+
|
523 |
+
prev_output_channel = output_channel
|
524 |
+
output_channel = reversed_block_out_channels[i]
|
525 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
526 |
+
|
527 |
+
# add upsample block for all BUT final layer
|
528 |
+
if not is_final_block:
|
529 |
+
add_upsample = True
|
530 |
+
self.num_upsamplers += 1
|
531 |
+
else:
|
532 |
+
add_upsample = False
|
533 |
+
|
534 |
+
up_block = get_up_block(
|
535 |
+
up_block_type,
|
536 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
537 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
538 |
+
in_channels=input_channel,
|
539 |
+
out_channels=output_channel,
|
540 |
+
prev_output_channel=prev_output_channel,
|
541 |
+
temb_channels=blocks_time_embed_dim,
|
542 |
+
add_upsample=add_upsample,
|
543 |
+
resnet_eps=norm_eps,
|
544 |
+
resnet_act_fn=act_fn,
|
545 |
+
resolution_idx=i,
|
546 |
+
resnet_groups=norm_num_groups,
|
547 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
548 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
549 |
+
dual_cross_attention=dual_cross_attention,
|
550 |
+
use_linear_projection=use_linear_projection,
|
551 |
+
only_cross_attention=only_cross_attention[i],
|
552 |
+
upcast_attention=upcast_attention,
|
553 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
554 |
+
attention_type=attention_type,
|
555 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
556 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
557 |
+
cross_attention_norm=cross_attention_norm,
|
558 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
559 |
+
dropout=dropout,
|
560 |
+
)
|
561 |
+
self.up_blocks.append(up_block)
|
562 |
+
prev_output_channel = output_channel
|
563 |
+
|
564 |
+
# out
|
565 |
+
if norm_num_groups is not None:
|
566 |
+
self.conv_norm_out = nn.GroupNorm(
|
567 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
568 |
+
)
|
569 |
+
|
570 |
+
self.conv_act = get_activation(act_fn)
|
571 |
+
|
572 |
+
else:
|
573 |
+
self.conv_norm_out = None
|
574 |
+
self.conv_act = None
|
575 |
+
|
576 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
577 |
+
self.conv_out = nn.Conv2d(
|
578 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
579 |
+
)
|
580 |
+
|
581 |
+
if attention_type in ["gated", "gated-text-image"]:
|
582 |
+
positive_len = 768
|
583 |
+
if isinstance(cross_attention_dim, int):
|
584 |
+
positive_len = cross_attention_dim
|
585 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
586 |
+
positive_len = cross_attention_dim[0]
|
587 |
+
|
588 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
589 |
+
self.position_net = PositionNet(
|
590 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
591 |
+
)
|
592 |
+
|
593 |
+
@property
|
594 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
595 |
+
r"""
|
596 |
+
Returns:
|
597 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
598 |
+
indexed by its weight name.
|
599 |
+
"""
|
600 |
+
# set recursively
|
601 |
+
processors = {}
|
602 |
+
|
603 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
604 |
+
if hasattr(module, "get_processor"):
|
605 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
606 |
+
|
607 |
+
for sub_name, child in module.named_children():
|
608 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
609 |
+
|
610 |
+
return processors
|
611 |
+
|
612 |
+
for name, module in self.named_children():
|
613 |
+
fn_recursive_add_processors(name, module, processors)
|
614 |
+
|
615 |
+
return processors
|
616 |
+
|
617 |
+
def set_attn_processor(
|
618 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
619 |
+
):
|
620 |
+
r"""
|
621 |
+
Sets the attention processor to use to compute attention.
|
622 |
+
|
623 |
+
Parameters:
|
624 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
625 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
626 |
+
for **all** `Attention` layers.
|
627 |
+
|
628 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
629 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
630 |
+
|
631 |
+
"""
|
632 |
+
count = len(self.attn_processors.keys())
|
633 |
+
|
634 |
+
if isinstance(processor, dict) and len(processor) != count:
|
635 |
+
raise ValueError(
|
636 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
637 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
638 |
+
)
|
639 |
+
|
640 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
641 |
+
if hasattr(module, "set_processor"):
|
642 |
+
if not isinstance(processor, dict):
|
643 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
644 |
+
else:
|
645 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
646 |
+
|
647 |
+
for sub_name, child in module.named_children():
|
648 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
649 |
+
|
650 |
+
for name, module in self.named_children():
|
651 |
+
fn_recursive_attn_processor(name, module, processor)
|
652 |
+
|
653 |
+
def set_default_attn_processor(self):
|
654 |
+
"""
|
655 |
+
Disables custom attention processors and sets the default attention implementation.
|
656 |
+
"""
|
657 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
658 |
+
processor = AttnAddedKVProcessor()
|
659 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
660 |
+
processor = AttnProcessor()
|
661 |
+
else:
|
662 |
+
raise ValueError(
|
663 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
664 |
+
)
|
665 |
+
|
666 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
667 |
+
|
668 |
+
def set_attention_slice(self, slice_size):
|
669 |
+
r"""
|
670 |
+
Enable sliced attention computation.
|
671 |
+
|
672 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
673 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
674 |
+
|
675 |
+
Args:
|
676 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
677 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
678 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
679 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
680 |
+
must be a multiple of `slice_size`.
|
681 |
+
"""
|
682 |
+
sliceable_head_dims = []
|
683 |
+
|
684 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
685 |
+
if hasattr(module, "set_attention_slice"):
|
686 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
687 |
+
|
688 |
+
for child in module.children():
|
689 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
690 |
+
|
691 |
+
# retrieve number of attention layers
|
692 |
+
for module in self.children():
|
693 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
694 |
+
|
695 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
696 |
+
|
697 |
+
if slice_size == "auto":
|
698 |
+
# half the attention head size is usually a good trade-off between
|
699 |
+
# speed and memory
|
700 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
701 |
+
elif slice_size == "max":
|
702 |
+
# make smallest slice possible
|
703 |
+
slice_size = num_sliceable_layers * [1]
|
704 |
+
|
705 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
706 |
+
|
707 |
+
if len(slice_size) != len(sliceable_head_dims):
|
708 |
+
raise ValueError(
|
709 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
710 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
711 |
+
)
|
712 |
+
|
713 |
+
for i in range(len(slice_size)):
|
714 |
+
size = slice_size[i]
|
715 |
+
dim = sliceable_head_dims[i]
|
716 |
+
if size is not None and size > dim:
|
717 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
718 |
+
|
719 |
+
# Recursively walk through all the children.
|
720 |
+
# Any children which exposes the set_attention_slice method
|
721 |
+
# gets the message
|
722 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
723 |
+
if hasattr(module, "set_attention_slice"):
|
724 |
+
module.set_attention_slice(slice_size.pop())
|
725 |
+
|
726 |
+
for child in module.children():
|
727 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
728 |
+
|
729 |
+
reversed_slice_size = list(reversed(slice_size))
|
730 |
+
for module in self.children():
|
731 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
732 |
+
|
733 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
734 |
+
if hasattr(module, "gradient_checkpointing"):
|
735 |
+
module.gradient_checkpointing = value
|
736 |
+
|
737 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
738 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
739 |
+
|
740 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
741 |
+
|
742 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
743 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
744 |
+
|
745 |
+
Args:
|
746 |
+
s1 (`float`):
|
747 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
748 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
749 |
+
s2 (`float`):
|
750 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
751 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
752 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
753 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
754 |
+
"""
|
755 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
756 |
+
setattr(upsample_block, "s1", s1)
|
757 |
+
setattr(upsample_block, "s2", s2)
|
758 |
+
setattr(upsample_block, "b1", b1)
|
759 |
+
setattr(upsample_block, "b2", b2)
|
760 |
+
|
761 |
+
def disable_freeu(self):
|
762 |
+
"""Disables the FreeU mechanism."""
|
763 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
764 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
765 |
+
for k in freeu_keys:
|
766 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k) is not None:
|
767 |
+
setattr(upsample_block, k, None)
|
768 |
+
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
sample: torch.FloatTensor,
|
772 |
+
timestep: Union[torch.Tensor, float, int],
|
773 |
+
encoder_hidden_states: torch.Tensor,
|
774 |
+
class_labels: Optional[torch.Tensor] = None,
|
775 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
776 |
+
attention_mask: Optional[torch.Tensor] = None,
|
777 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
778 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
779 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
780 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
781 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
782 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
783 |
+
return_dict: bool = True,
|
784 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
785 |
+
r"""
|
786 |
+
The [`MyUNetModel`] forward method.
|
787 |
+
|
788 |
+
Args:
|
789 |
+
sample (`torch.FloatTensor`):
|
790 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
791 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
792 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
793 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
794 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
795 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
796 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
797 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
798 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
799 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
800 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
801 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
802 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
803 |
+
cross_attention_kwargs (`dict`, *optional*):
|
804 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
805 |
+
`self.processor` in
|
806 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
807 |
+
added_cond_kwargs: (`dict`, *optional*):
|
808 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
809 |
+
are passed along to the UNet blocks.
|
810 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
811 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
812 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
813 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
814 |
+
encoder_attention_mask (`torch.Tensor`):
|
815 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
816 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
817 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
818 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
819 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
820 |
+
tuple.
|
821 |
+
cross_attention_kwargs (`dict`, *optional*):
|
822 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
823 |
+
added_cond_kwargs: (`dict`, *optional*):
|
824 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
825 |
+
are passed along to the UNet blocks.
|
826 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
827 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
828 |
+
example from ControlNet side model(s)
|
829 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
830 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
831 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
832 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
833 |
+
|
834 |
+
Returns:
|
835 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
836 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
837 |
+
a `tuple` is returned where the first element is the sample tensor.
|
838 |
+
"""
|
839 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
840 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
841 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
842 |
+
# on the fly if necessary.
|
843 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
844 |
+
|
845 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
846 |
+
forward_upsample_size = False
|
847 |
+
upsample_size = None
|
848 |
+
|
849 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
850 |
+
# Forward upsample size to force interpolation output size.
|
851 |
+
forward_upsample_size = True
|
852 |
+
|
853 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
854 |
+
# expects mask of shape:
|
855 |
+
# [batch, key_tokens]
|
856 |
+
# adds singleton query_tokens dimension:
|
857 |
+
# [batch, 1, key_tokens]
|
858 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
859 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
860 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
861 |
+
if attention_mask is not None:
|
862 |
+
# assume that mask is expressed as:
|
863 |
+
# (1 = keep, 0 = discard)
|
864 |
+
# convert mask into a bias that can be added to attention scores:
|
865 |
+
# (keep = +0, discard = -10000.0)
|
866 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
867 |
+
attention_mask = attention_mask.unsqueeze(1)
|
868 |
+
|
869 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
870 |
+
if encoder_attention_mask is not None:
|
871 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
872 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
873 |
+
|
874 |
+
# 0. center input if necessary
|
875 |
+
if self.config.center_input_sample:
|
876 |
+
sample = 2 * sample - 1.0
|
877 |
+
|
878 |
+
# 1. time
|
879 |
+
timesteps = timestep
|
880 |
+
if not torch.is_tensor(timesteps):
|
881 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
882 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
883 |
+
is_mps = sample.device.type == "mps"
|
884 |
+
if isinstance(timestep, float):
|
885 |
+
dtype = torch.float32 if is_mps else torch.float64
|
886 |
+
else:
|
887 |
+
dtype = torch.int32 if is_mps else torch.int64
|
888 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
889 |
+
elif len(timesteps.shape) == 0:
|
890 |
+
timesteps = timesteps[None].to(sample.device)
|
891 |
+
|
892 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
893 |
+
timesteps = timesteps.expand(sample.shape[0])
|
894 |
+
|
895 |
+
t_emb = self.time_proj(timesteps)
|
896 |
+
|
897 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
898 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
899 |
+
# there might be better ways to encapsulate this.
|
900 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
901 |
+
|
902 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
903 |
+
aug_emb = None
|
904 |
+
|
905 |
+
if self.class_embedding is not None:
|
906 |
+
if class_labels is None:
|
907 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
908 |
+
|
909 |
+
if self.config.class_embed_type == "timestep":
|
910 |
+
class_labels = self.time_proj(class_labels)
|
911 |
+
|
912 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
913 |
+
# there might be better ways to encapsulate this.
|
914 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
915 |
+
|
916 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
917 |
+
|
918 |
+
if self.config.class_embeddings_concat:
|
919 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
920 |
+
else:
|
921 |
+
emb = emb + class_emb
|
922 |
+
|
923 |
+
if self.config.addition_embed_type == "text":
|
924 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
925 |
+
elif self.config.addition_embed_type == "text_image":
|
926 |
+
# Kandinsky 2.1 - style
|
927 |
+
if "image_embeds" not in added_cond_kwargs:
|
928 |
+
raise ValueError(
|
929 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
930 |
+
)
|
931 |
+
|
932 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
933 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
934 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
935 |
+
elif self.config.addition_embed_type == "text_time":
|
936 |
+
# SDXL - style
|
937 |
+
if "text_embeds" not in added_cond_kwargs:
|
938 |
+
raise ValueError(
|
939 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
940 |
+
)
|
941 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
942 |
+
if "time_ids" not in added_cond_kwargs:
|
943 |
+
raise ValueError(
|
944 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
945 |
+
)
|
946 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
947 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
948 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
949 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
950 |
+
add_embeds = add_embeds.to(emb.dtype)
|
951 |
+
aug_emb = self.add_embedding(add_embeds)
|
952 |
+
elif self.config.addition_embed_type == "image":
|
953 |
+
# Kandinsky 2.2 - style
|
954 |
+
if "image_embeds" not in added_cond_kwargs:
|
955 |
+
raise ValueError(
|
956 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
957 |
+
)
|
958 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
959 |
+
aug_emb = self.add_embedding(image_embs)
|
960 |
+
elif self.config.addition_embed_type == "image_hint":
|
961 |
+
# Kandinsky 2.2 - style
|
962 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
963 |
+
raise ValueError(
|
964 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
965 |
+
)
|
966 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
967 |
+
hint = added_cond_kwargs.get("hint")
|
968 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
969 |
+
sample = torch.cat([sample, hint], dim=1)
|
970 |
+
|
971 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
972 |
+
|
973 |
+
if self.time_embed_act is not None:
|
974 |
+
emb = self.time_embed_act(emb)
|
975 |
+
|
976 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
977 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
978 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
979 |
+
# Kadinsky 2.1 - style
|
980 |
+
if "image_embeds" not in added_cond_kwargs:
|
981 |
+
raise ValueError(
|
982 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
983 |
+
)
|
984 |
+
|
985 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
986 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
987 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
988 |
+
# Kandinsky 2.2 - style
|
989 |
+
if "image_embeds" not in added_cond_kwargs:
|
990 |
+
raise ValueError(
|
991 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
992 |
+
)
|
993 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
994 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
995 |
+
# 2. pre-process
|
996 |
+
sample = self.conv_in(sample)
|
997 |
+
|
998 |
+
# 2.5 GLIGEN position net
|
999 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1000 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1001 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1002 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1003 |
+
|
1004 |
+
# 3. down
|
1005 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1006 |
+
if USE_PEFT_BACKEND:
|
1007 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1008 |
+
scale_lora_layers(self, lora_scale)
|
1009 |
+
|
1010 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1011 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1012 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1013 |
+
# maintain backward compatibility for legacy usage, where
|
1014 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1015 |
+
# but can only use one or the other
|
1016 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1017 |
+
deprecate(
|
1018 |
+
"T2I should not use down_block_additional_residuals",
|
1019 |
+
"1.3.0",
|
1020 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1021 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1022 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1023 |
+
standard_warn=False,
|
1024 |
+
)
|
1025 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1026 |
+
is_adapter = True
|
1027 |
+
|
1028 |
+
down_block_res_samples = (sample,)
|
1029 |
+
for downsample_block in self.down_blocks:
|
1030 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1031 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1032 |
+
additional_residuals = {}
|
1033 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1034 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1035 |
+
|
1036 |
+
sample, res_samples = downsample_block(
|
1037 |
+
hidden_states=sample,
|
1038 |
+
temb=emb,
|
1039 |
+
encoder_hidden_states=encoder_hidden_states,
|
1040 |
+
attention_mask=attention_mask,
|
1041 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1042 |
+
encoder_attention_mask=encoder_attention_mask,
|
1043 |
+
**additional_residuals,
|
1044 |
+
)
|
1045 |
+
else:
|
1046 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1047 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1048 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1049 |
+
|
1050 |
+
down_block_res_samples += res_samples
|
1051 |
+
|
1052 |
+
if is_controlnet:
|
1053 |
+
new_down_block_res_samples = ()
|
1054 |
+
|
1055 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1056 |
+
down_block_res_samples, down_block_additional_residuals
|
1057 |
+
):
|
1058 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1059 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1060 |
+
|
1061 |
+
down_block_res_samples = new_down_block_res_samples
|
1062 |
+
|
1063 |
+
# 4. mid
|
1064 |
+
if self.mid_block is not None:
|
1065 |
+
sample = self.mid_block(
|
1066 |
+
sample,
|
1067 |
+
emb,
|
1068 |
+
encoder_hidden_states=encoder_hidden_states,
|
1069 |
+
attention_mask=attention_mask,
|
1070 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1071 |
+
encoder_attention_mask=encoder_attention_mask,
|
1072 |
+
)
|
1073 |
+
# To support T2I-Adapter-XL
|
1074 |
+
if (
|
1075 |
+
is_adapter
|
1076 |
+
and len(down_intrablock_additional_residuals) > 0
|
1077 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1078 |
+
):
|
1079 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1080 |
+
|
1081 |
+
if is_controlnet:
|
1082 |
+
sample = sample + mid_block_additional_residual
|
1083 |
+
|
1084 |
+
# 5. up
|
1085 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1086 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1087 |
+
|
1088 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1089 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1090 |
+
|
1091 |
+
# if we have not reached the final block and need to forward the
|
1092 |
+
# upsample size, we do it here
|
1093 |
+
if not is_final_block and forward_upsample_size:
|
1094 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1095 |
+
|
1096 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1097 |
+
sample = upsample_block(
|
1098 |
+
hidden_states=sample,
|
1099 |
+
temb=emb,
|
1100 |
+
res_hidden_states_tuple=res_samples,
|
1101 |
+
encoder_hidden_states=encoder_hidden_states,
|
1102 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1103 |
+
upsample_size=upsample_size,
|
1104 |
+
attention_mask=attention_mask,
|
1105 |
+
encoder_attention_mask=encoder_attention_mask,
|
1106 |
+
)
|
1107 |
+
else:
|
1108 |
+
sample = upsample_block(
|
1109 |
+
hidden_states=sample,
|
1110 |
+
temb=emb,
|
1111 |
+
res_hidden_states_tuple=res_samples,
|
1112 |
+
upsample_size=upsample_size,
|
1113 |
+
scale=lora_scale,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
# 6. post-process
|
1117 |
+
if self.conv_norm_out:
|
1118 |
+
sample = self.conv_norm_out(sample)
|
1119 |
+
sample = self.conv_act(sample)
|
1120 |
+
sample = self.conv_out(sample)
|
1121 |
+
|
1122 |
+
if USE_PEFT_BACKEND:
|
1123 |
+
# remove `lora_scale` from each PEFT layer
|
1124 |
+
unscale_lora_layers(self)
|
1125 |
+
|
1126 |
+
if not return_dict:
|
1127 |
+
return (sample,)
|
1128 |
+
|
1129 |
+
return UNet2DConditionOutput(sample=sample)
|
unet/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d88961abcf8276c903b23ee1f1226960cfc314f9351bec493cdf774c4a3150b9
|
3 |
+
size 7875412
|
unet/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vae/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
32,
|
7 |
+
64
|
8 |
+
],
|
9 |
+
"down_block_types": [
|
10 |
+
"DownEncoderBlock2D",
|
11 |
+
"DownEncoderBlock2D"
|
12 |
+
],
|
13 |
+
"in_channels": 3,
|
14 |
+
"latent_channels": 4,
|
15 |
+
"layers_per_block": 1,
|
16 |
+
"norm_num_groups": 32,
|
17 |
+
"out_channels": 3,
|
18 |
+
"sample_size": 128,
|
19 |
+
"scaling_factor": 0.18215,
|
20 |
+
"up_block_types": [
|
21 |
+
"UpDecoderBlock2D",
|
22 |
+
"UpDecoderBlock2D"
|
23 |
+
]
|
24 |
+
}
|
vae/diffusion_flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f660614068b8211de0076bbf4739ed5b4bb34a1d752ebfd6b350bf142643883a
|
3 |
+
size 2637326
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84bb0d30f9de5f723541259119fa2702639a8c73465fe8263085739154eff9f
|
3 |
+
size 2681001
|
vae_decoder/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
32,
|
7 |
+
64
|
8 |
+
],
|
9 |
+
"down_block_types": [
|
10 |
+
"DownEncoderBlock2D",
|
11 |
+
"DownEncoderBlock2D"
|
12 |
+
],
|
13 |
+
"in_channels": 3,
|
14 |
+
"latent_channels": 4,
|
15 |
+
"layers_per_block": 1,
|
16 |
+
"norm_num_groups": 32,
|
17 |
+
"out_channels": 3,
|
18 |
+
"sample_size": 128,
|
19 |
+
"scaling_factor": 0.18215,
|
20 |
+
"up_block_types": [
|
21 |
+
"UpDecoderBlock2D",
|
22 |
+
"UpDecoderBlock2D"
|
23 |
+
]
|
24 |
+
}
|
vae_decoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d43e163a98640b88a7fc09bdab4ce4e94dd14eb9d75405d3cd78704484c12de
|
3 |
+
size 1682764
|
vae_decoder/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18cb02fba3ec844ab18b875931d13e48144a1e294e8d1ff7b92490864fbffecd
|
3 |
+
size 1603072
|
vae_decoder/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vae_encoder/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.18.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
32,
|
7 |
+
64
|
8 |
+
],
|
9 |
+
"down_block_types": [
|
10 |
+
"DownEncoderBlock2D",
|
11 |
+
"DownEncoderBlock2D"
|
12 |
+
],
|
13 |
+
"in_channels": 3,
|
14 |
+
"latent_channels": 4,
|
15 |
+
"layers_per_block": 1,
|
16 |
+
"norm_num_groups": 32,
|
17 |
+
"out_channels": 3,
|
18 |
+
"sample_size": 128,
|
19 |
+
"scaling_factor": 0.18215,
|
20 |
+
"up_block_types": [
|
21 |
+
"UpDecoderBlock2D",
|
22 |
+
"UpDecoderBlock2D"
|
23 |
+
]
|
24 |
+
}
|
vae_encoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:155849e8986089d7b02e137f01aacca23f8e3c5a133f69209d50cd4a296a48e9
|
3 |
+
size 1095370
|
vae_encoder/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e20a8b2c826a5e08ace068bd50e19f5c845ea6a33f6357a6710d726e433ca015
|
3 |
+
size 1021888
|
vae_encoder/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|