import os dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None cudnn_benchmark = True custom_imports = dict(imports=['geospatial_fm']) num_frames = 3 img_size = 224 num_workers = 2 # model # TO BE DEFINED BY USER: model path pretrained_weights_path = '' num_layers = 6 patch_size = 16 embed_dim = 768 num_heads = 8 tubelet_size = 1 max_epochs = 80 eval_epoch_interval = 5 loss_weights_multi = [ 0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462, 1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702 ] loss_func = dict( type='CrossEntropyLoss', use_sigmoid=False, class_weight=loss_weights_multi, avg_non_ignore=True) output_embed_dim = embed_dim*num_frames # TO BE DEFINED BY USER: Save directory experiment = '' project_dir = '' work_dir = os.path.join(project_dir, experiment) save_path = work_dir gpu_ids = range(0, 1) dataset_type = 'GeospatialDataset' # TO BE DEFINED BY USER: data directory data_root = '' splits = dict( train='', val= '', test= '' ) img_norm_cfg = dict( means=[ 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962, 1739.579917 ], stds=[ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808, 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808, 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808 ]) bands = [0, 1, 2, 3, 4, 5] tile_size = 224 orig_nsize = 512 crop_size = (tile_size, tile_size) train_pipeline = [ dict(type='LoadGeospatialImageFromFile', to_float32=True), dict(type='LoadGeospatialAnnotations', reduce_zero_label=True), dict(type='RandomFlip', prob=0.5), dict(type='ToTensor', keys=['img', 'gt_semantic_seg']), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type='TorchNormalize', **img_norm_cfg), dict(type='TorchRandomCrop', crop_size=crop_size), dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)), dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)), dict(type='CastTensor', keys=['gt_semantic_seg'], new_type="torch.LongTensor"), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadGeospatialImageFromFile', to_float32=True), dict(type='ToTensor', keys=['img']), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type='TorchNormalize', **img_norm_cfg), dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, -1, -1), look_up = {'2': 1, '3': 2}), dict(type='CastTensor', keys=['img'], new_type="torch.FloatTensor"), dict(type='CollectTestList', keys=['img'], meta_keys=['img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']), ] CLASSES = ('Natural Vegetation', 'Forest', 'Corn', 'Soybeans', 'Wetlands', 'Developed/Barren', 'Open Water', 'Winter Wheat', 'Alfalfa', 'Fallow/Idle Cropland', 'Cotton', 'Sorghum', 'Other') dataset = 'GeospatialDataset' data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset, CLASSES=CLASSES, reduce_zero_label=True, data_root=data_root, img_dir='training_chips', ann_dir='training_chips', pipeline=train_pipeline, img_suffix='_merged.tif', seg_map_suffix='.mask.tif', split=splits['train']), val=dict( type=dataset, CLASSES=CLASSES, reduce_zero_label=True, data_root=data_root, img_dir='validation_chips', ann_dir='validation_chips', pipeline=test_pipeline, img_suffix='_merged.tif', seg_map_suffix='.mask.tif', split=splits['val'] ), test=dict( type=dataset, CLASSES=CLASSES, reduce_zero_label=True, data_root=data_root, img_dir='validation_chips', ann_dir='validation_chips', pipeline=test_pipeline, img_suffix='_merged.tif', seg_map_suffix='.mask.tif', split=splits['val'] )) optimizer = dict( type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-06, power=1.0, min_lr=0.0, by_epoch=False) log_config = dict( interval=10, hooks=[dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook')]) checkpoint_config = dict( by_epoch=True, interval=100, out_dir=save_path) evaluation = dict(interval=eval_epoch_interval, metric='mIoU', pre_eval=True, save_best='mIoU', by_epoch=True) reduce_train_set = dict(reduce_train_set=False) reduce_factor = dict(reduce_factor=1) runner = dict(type='EpochBasedRunner', max_epochs=max_epochs) workflow = [('train', 1)] norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='TemporalEncoderDecoder', frozen_backbone=False, pretrained=pretrained_weights_path, backbone=dict( type='TemporalViTEncoder', img_size=img_size, patch_size=patch_size, num_frames=num_frames, tubelet_size=1, in_chans=len(bands), embed_dim=embed_dim, depth=6, num_heads=num_heads, mlp_ratio=4.0, norm_pix_loss=False), neck=dict( type='ConvTransformerTokensToEmbeddingNeck', embed_dim=embed_dim*num_frames, output_embed_dim=output_embed_dim, drop_cls_token=True, Hp=14, Wp=14), decode_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type='FCNHead', in_index=-1, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=loss_func), auxiliary_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type='FCNHead', in_index=-1, channels=256, num_convs=2, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=loss_func), train_cfg=dict(), test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size))) auto_resume = False