onkarpandit-g42
commited on
Commit
•
3fdef2a
1
Parent(s):
de07f29
Upload configuration_jais.py with huggingface_hub
Browse files- configuration_jais.py +196 -0
configuration_jais.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
# Copyright 2023 Cerebras Systems.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" JAIS configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
class JAISConfig(PretrainedConfig):
|
26 |
+
"""
|
27 |
+
This is the configuration class to store the configuration of a [`JAISModel`]. It is used to instantiate a JAIS
|
28 |
+
model according to the specified arguments, defining the model architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
36 |
+
Vocabulary size of the JAIS model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`JAISModel`].
|
38 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
41 |
+
n_embd (`int`, *optional*, defaults to 768):
|
42 |
+
Dimensionality of the embeddings and hidden states.
|
43 |
+
n_layer (`int`, *optional*, defaults to 12):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
n_head (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
n_inner (`int`, *optional*, defaults to None):
|
48 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
49 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
50 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
|
51 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
53 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout ratio for the embeddings.
|
55 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout ratio for the attention.
|
57 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
58 |
+
The epsilon to use in the layer normalization layers.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
62 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
65 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
67 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
69 |
+
dot-product/softmax to float() when training with mixed precision.
|
70 |
+
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
71 |
+
Positional embedding can be either `"alibi"` or `"learned"`.
|
72 |
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
73 |
+
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
74 |
+
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
75 |
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
76 |
+
muP parameter to scale token and position embeddings.
|
77 |
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
78 |
+
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
79 |
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
80 |
+
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
81 |
+
scale_attn_weights to `True` as well.
|
82 |
+
alibi_scaling (`Dict`, *optional*):
|
83 |
+
Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear
|
84 |
+
scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling
|
85 |
+
or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected
|
86 |
+
formats are `{"type": strategy name, "factor": scaling factor}` or
|
87 |
+
`{"type": strategy name, "train_seq_len": training sequence length}`.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import JAISConfig, JAISModel
|
93 |
+
|
94 |
+
>>> # Initializing a JAIS configuration
|
95 |
+
>>> configuration = JAISConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the configuration
|
98 |
+
>>> model = JAISModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "jais"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
attribute_map = {
|
107 |
+
"hidden_size": "n_embd",
|
108 |
+
"max_position_embeddings": "n_positions",
|
109 |
+
"num_attention_heads": "n_head",
|
110 |
+
"num_hidden_layers": "n_layer",
|
111 |
+
}
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=50257,
|
116 |
+
n_positions=1024,
|
117 |
+
n_embd=768,
|
118 |
+
n_layer=12,
|
119 |
+
n_head=12,
|
120 |
+
n_inner=None,
|
121 |
+
activation_function="gelu_new",
|
122 |
+
resid_pdrop=0.1,
|
123 |
+
embd_pdrop=0.1,
|
124 |
+
attn_pdrop=0.1,
|
125 |
+
layer_norm_epsilon=1e-5,
|
126 |
+
initializer_range=0.02,
|
127 |
+
scale_attn_weights=True,
|
128 |
+
use_cache=True,
|
129 |
+
bos_token_id=50256,
|
130 |
+
eos_token_id=50256,
|
131 |
+
scale_attn_by_inverse_layer_idx=False,
|
132 |
+
reorder_and_upcast_attn=False,
|
133 |
+
position_embedding_type="learned",
|
134 |
+
mup_width_scale=1.0,
|
135 |
+
mup_embeddings_scale=1.0,
|
136 |
+
mup_output_alpha=1.0,
|
137 |
+
mup_scale_qk_dot_by_d=False,
|
138 |
+
alibi_scaling=None,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.n_positions = n_positions
|
143 |
+
self.n_embd = n_embd
|
144 |
+
self.n_layer = n_layer
|
145 |
+
self.n_head = n_head
|
146 |
+
self.n_inner = n_inner
|
147 |
+
self.activation_function = activation_function
|
148 |
+
self.resid_pdrop = resid_pdrop
|
149 |
+
self.embd_pdrop = embd_pdrop
|
150 |
+
self.attn_pdrop = attn_pdrop
|
151 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.scale_attn_weights = scale_attn_weights
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
156 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
157 |
+
|
158 |
+
self.bos_token_id = bos_token_id
|
159 |
+
self.eos_token_id = eos_token_id
|
160 |
+
|
161 |
+
self.position_embedding_type = position_embedding_type
|
162 |
+
self.mup_width_scale = mup_width_scale
|
163 |
+
self.mup_embeddings_scale = mup_embeddings_scale
|
164 |
+
self.mup_output_alpha = mup_output_alpha
|
165 |
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
166 |
+
|
167 |
+
self.alibi_scaling = alibi_scaling
|
168 |
+
self._alibi_scaling_validation()
|
169 |
+
|
170 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
171 |
+
|
172 |
+
def _alibi_scaling_validation(self):
|
173 |
+
"""
|
174 |
+
Validate the `alibi_scaling` configuration.
|
175 |
+
"""
|
176 |
+
if self.alibi_scaling is None:
|
177 |
+
return
|
178 |
+
|
179 |
+
if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2:
|
180 |
+
raise ValueError(
|
181 |
+
"`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, "
|
182 |
+
f"got {self.alibi_scaling}"
|
183 |
+
)
|
184 |
+
alibi_scaling_type = self.alibi_scaling.get("type", None)
|
185 |
+
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
|
186 |
+
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
|
187 |
+
if alibi_scaling_type is None or alibi_scaling_type != "linear":
|
188 |
+
raise ValueError(
|
189 |
+
f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}"
|
190 |
+
)
|
191 |
+
if alibi_scaling_factor is not None:
|
192 |
+
if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0:
|
193 |
+
raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}")
|
194 |
+
if alibi_dynamic_scaling is not None:
|
195 |
+
if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1:
|
196 |
+
raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}")
|