|
|
|
import glob |
|
import os |
|
import shutil |
|
|
|
from tests import get_tests_data_path, get_tests_output_path, run_cli |
|
from TTS.tts.utils.languages import LanguageManager |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from TTS.utils.generic_utils import get_user_data_dir |
|
from TTS.utils.manage import ModelManager |
|
|
|
|
|
def run_models(offset=0, step=1): |
|
"""Check if all the models are downloadable and tts models run correctly.""" |
|
print(" > Run synthesizer with all the models.") |
|
output_path = os.path.join(get_tests_output_path(), "output.wav") |
|
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False) |
|
model_names = manager.list_models() |
|
for model_name in model_names[offset::step]: |
|
print(f"\n > Run - {model_name}") |
|
model_path, _, _ = manager.download_model(model_name) |
|
if "tts_models" in model_name: |
|
local_download_dir = os.path.dirname(model_path) |
|
|
|
speaker_files = glob.glob(local_download_dir + "/speaker*") |
|
language_files = glob.glob(local_download_dir + "/language*") |
|
language_id = "" |
|
if len(speaker_files) > 0: |
|
|
|
if "speaker_ids" in speaker_files[0]: |
|
speaker_manager = SpeakerManager(speaker_id_file_path=speaker_files[0]) |
|
elif "speakers" in speaker_files[0]: |
|
speaker_manager = SpeakerManager(d_vectors_file_path=speaker_files[0]) |
|
|
|
|
|
if len(language_files) > 0 and "language_ids" in language_files[0]: |
|
language_manager = LanguageManager(language_ids_file_path=language_files[0]) |
|
language_id = language_manager.language_names[0] |
|
|
|
speaker_id = list(speaker_manager.name_to_id.keys())[0] |
|
run_cli( |
|
f"tts --model_name {model_name} " |
|
f'--text "This is an example." --out_path "{output_path}" --speaker_idx "{speaker_id}" --language_idx "{language_id}" --progress_bar False' |
|
) |
|
else: |
|
|
|
run_cli( |
|
f"tts --model_name {model_name} " |
|
f'--text "This is an example." --out_path "{output_path}" --progress_bar False' |
|
) |
|
|
|
shutil.rmtree(local_download_dir) |
|
shutil.rmtree(get_user_data_dir("tts")) |
|
elif "voice_conversion_models" in model_name: |
|
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") |
|
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") |
|
run_cli( |
|
f"tts --model_name {model_name} " |
|
f'--out_path "{output_path}" --source_wav "{speaker_wav}" --target_wav "{reference_wav}" --progress_bar False' |
|
) |
|
else: |
|
|
|
manager.download_model(model_name) |
|
print(f" | > OK: {model_name}") |
|
|
|
|
|
|
|
|
|
|
|
def test_models_offset_0_step_3(): |
|
run_models(offset=0, step=3) |
|
|
|
|
|
def test_models_offset_1_step_3(): |
|
run_models(offset=1, step=3) |
|
|
|
|
|
def test_models_offset_2_step_3(): |
|
run_models(offset=2, step=3) |
|
|
|
|
|
def test_voice_conversion(): |
|
print(" > Run voice conversion inference using YourTTS model.") |
|
model_name = "tts_models/multilingual/multi-dataset/your_tts" |
|
language_id = "en" |
|
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") |
|
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") |
|
output_path = os.path.join(get_tests_output_path(), "output.wav") |
|
run_cli( |
|
f"tts --model_name {model_name}" |
|
f" --out_path {output_path} --speaker_wav {speaker_wav} --reference_wav {reference_wav} --language_idx {language_id} --progress_bar False" |
|
) |
|
|