Text-to-Speech
English
French
tts / tests /zoo_tests /test_models.py
abuzahid's picture
Upload 542 files
127d53c
#!/usr/bin/env python3`
import glob
import os
import shutil
from tests import get_tests_data_path, get_tests_output_path, run_cli
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.generic_utils import get_user_data_dir
from TTS.utils.manage import ModelManager
def run_models(offset=0, step=1):
"""Check if all the models are downloadable and tts models run correctly."""
print(" > Run synthesizer with all the models.")
output_path = os.path.join(get_tests_output_path(), "output.wav")
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False)
model_names = manager.list_models()
for model_name in model_names[offset::step]:
print(f"\n > Run - {model_name}")
model_path, _, _ = manager.download_model(model_name)
if "tts_models" in model_name:
local_download_dir = os.path.dirname(model_path)
# download and run the model
speaker_files = glob.glob(local_download_dir + "/speaker*")
language_files = glob.glob(local_download_dir + "/language*")
language_id = ""
if len(speaker_files) > 0:
# multi-speaker model
if "speaker_ids" in speaker_files[0]:
speaker_manager = SpeakerManager(speaker_id_file_path=speaker_files[0])
elif "speakers" in speaker_files[0]:
speaker_manager = SpeakerManager(d_vectors_file_path=speaker_files[0])
# multi-lingual model - Assuming multi-lingual models are also multi-speaker
if len(language_files) > 0 and "language_ids" in language_files[0]:
language_manager = LanguageManager(language_ids_file_path=language_files[0])
language_id = language_manager.language_names[0]
speaker_id = list(speaker_manager.name_to_id.keys())[0]
run_cli(
f"tts --model_name {model_name} "
f'--text "This is an example." --out_path "{output_path}" --speaker_idx "{speaker_id}" --language_idx "{language_id}" --progress_bar False'
)
else:
# single-speaker model
run_cli(
f"tts --model_name {model_name} "
f'--text "This is an example." --out_path "{output_path}" --progress_bar False'
)
# remove downloaded models
shutil.rmtree(local_download_dir)
shutil.rmtree(get_user_data_dir("tts"))
elif "voice_conversion_models" in model_name:
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav")
run_cli(
f"tts --model_name {model_name} "
f'--out_path "{output_path}" --source_wav "{speaker_wav}" --target_wav "{reference_wav}" --progress_bar False'
)
else:
# only download the model
manager.download_model(model_name)
print(f" | > OK: {model_name}")
# folders = glob.glob(os.path.join(manager.output_prefix, "*"))
# assert len(folders) == len(model_names) // step
def test_models_offset_0_step_3():
run_models(offset=0, step=3)
def test_models_offset_1_step_3():
run_models(offset=1, step=3)
def test_models_offset_2_step_3():
run_models(offset=2, step=3)
def test_voice_conversion():
print(" > Run voice conversion inference using YourTTS model.")
model_name = "tts_models/multilingual/multi-dataset/your_tts"
language_id = "en"
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav")
output_path = os.path.join(get_tests_output_path(), "output.wav")
run_cli(
f"tts --model_name {model_name}"
f" --out_path {output_path} --speaker_wav {speaker_wav} --reference_wav {reference_wav} --language_idx {language_id} --progress_bar False"
)