x54-729
commited on
Commit
•
ae3bb61
1
Parent(s):
8eec32b
update README
Browse files
README.md
CHANGED
@@ -20,18 +20,17 @@ license: other
|
|
20 |
|
21 |
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
|
22 |
|
23 |
-
[
|
24 |
|
25 |
</div>
|
26 |
|
27 |
|
28 |
## Introduction
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
- internlm2
|
33 |
-
- internlm2-chat
|
34 |
-
- internlm2-chat (**recommended**): Optimized for conversational interaction on top of the internlm2-chat-sft through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation.
|
35 |
|
36 |
The base model of InternLM2 has the following technical features:
|
37 |
|
@@ -45,15 +44,15 @@ The base model of InternLM2 has the following technical features:
|
|
45 |
|
46 |
We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool [OpenCompass](https://github.com/open-compass/opencompass). Some of the evaluation results are shown in the table below. You are welcome to visit the [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
|
47 |
|
48 |
-
| Dataset\Models | InternLM2-
|
49 |
-
| --- | --- | --- | --- | --- |
|
50 |
-
| MMLU |
|
51 |
-
| AGIEval |
|
52 |
-
| BBH |
|
53 |
-
| GSM8K |
|
54 |
-
| MATH |
|
55 |
-
| HumanEval |
|
56 |
-
| MBPP(Sanitized) |
|
57 |
|
58 |
|
59 |
- The evaluation results were obtained from [OpenCompass](https://github.com/open-compass/opencompass) , and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/open-compass/opencompass).
|
@@ -92,34 +91,31 @@ print(output)
|
|
92 |
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <[email protected]>.
|
93 |
|
94 |
## 简介
|
95 |
-
|
96 |
|
97 |
-
- internlm2-base
|
98 |
-
- internlm2
|
99 |
-
- internlm2-chat-sft:在Base基础上,进行有监督的人类对齐训练;
|
100 |
-
- internlm2-chat(**推荐**):在internlm2-chat-sft基础上,经过RLHF,面向对话交互进行了优化,具有很好的指令遵循、共情聊天和调用工具等的能力。
|
101 |
|
102 |
InternLM2 的基础模型具备以下的技术特点
|
103 |
|
104 |
- 有效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。
|
105 |
- 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码等方面的能力提升显著。
|
106 |
|
107 |
-
|
108 |
## InternLM2-1.8B
|
109 |
|
110 |
### 性能评测
|
111 |
|
112 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 对 InternLM2 在几个重要的评测集进行了评测 ,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
|
113 |
|
114 |
-
| 评测集 | InternLM2-
|
115 |
-
| --- | --- | --- | --- | --- |
|
116 |
-
| MMLU |
|
117 |
-
| AGIEval |
|
118 |
-
| BBH |
|
119 |
-
| GSM8K |
|
120 |
-
| MATH |
|
121 |
-
| HumanEval |
|
122 |
-
| MBPP(Sanitized) |
|
123 |
|
124 |
- 以上评测结果基于 [OpenCompass](https://github.com/open-compass/opencompass) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/open-compass/opencompass) 中提供的配置文件。
|
125 |
- 评测数据会因 [OpenCompass](https://github.com/open-compass/opencompass) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/open-compass/opencompass) 最新版的评测结果为主。
|
@@ -149,4 +145,4 @@ print(output)
|
|
149 |
|
150 |
## 开源许可证
|
151 |
|
152 |
-
本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 <[email protected]>。
|
|
|
20 |
|
21 |
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
|
22 |
|
23 |
+
[[表情]Github Repo](https://github.com/InternLM/InternLM) • [[表情]Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
|
24 |
|
25 |
</div>
|
26 |
|
27 |
|
28 |
## Introduction
|
29 |
+
InternLM2-1.8B is the 1.8 billion parameter version of the second generation InternLM series. In order to facilitate user use and research, InternLM2-1.8B has two versions of open-source models. They are:
|
30 |
|
31 |
+
|
32 |
+
- internlm2: Built upon the internlm2-base, this version has further pretrained on domain-specific corpus. It shows outstanding performance in evaluations while maintaining robust general language abilities, making it our recommended choice for most applications.
|
33 |
+
- internlm2-chat: Optimized for conversational interaction on top of the internlm2-chat-sft through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation.
|
|
|
34 |
|
35 |
The base model of InternLM2 has the following technical features:
|
36 |
|
|
|
44 |
|
45 |
We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool [OpenCompass](https://github.com/open-compass/opencompass). Some of the evaluation results are shown in the table below. You are welcome to visit the [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
|
46 |
|
47 |
+
| Dataset\Models | InternLM2-1.8B | InternLM2-Chat-1.8B | InternLM2-7B | InternLM2-Chat-7B |
|
48 |
+
| --- | --- | --- | --- | --- |
|
49 |
+
| MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
|
50 |
+
| AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
|
51 |
+
| BBH | 37.5 | 35.2 | 65.0 | 61.2 |
|
52 |
+
| GSM8K | 31.2 | 39.7 | 70.8 | 70.7 |
|
53 |
+
| MATH | 5.6 | 11.8 | 20.2 | 23.0 |
|
54 |
+
| HumanEval | 25.0 | 32.9 | 43.3 | 59.8 |
|
55 |
+
| MBPP(Sanitized) | 22.2 | 23.2 | 51.8 | 51.4 |
|
56 |
|
57 |
|
58 |
- The evaluation results were obtained from [OpenCompass](https://github.com/open-compass/opencompass) , and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/open-compass/opencompass).
|
|
|
91 |
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <[email protected]>.
|
92 |
|
93 |
## 简介
|
94 |
+
书生·浦语-1.8B (InternLM2-1.8B) 是第二代浦语模型系列的18亿参数版本。为了方便用户使用和研究,书生·浦语-1.8B (InternLM2-1.8B) 共有两个版本的开源模型,他们分别是:
|
95 |
|
96 |
+
- internlm2: 在internlm2-base基础上,进一步在特定领域的语料上进行预训练,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座;
|
97 |
+
- internlm2-chat:在internlm2-chat-sft基础上,经过RLHF,面向对话交互进行了优化,具有很好的指令遵循、共情聊天和调用工具等的能力。
|
|
|
|
|
98 |
|
99 |
InternLM2 的基础模型具备以下的技术特点
|
100 |
|
101 |
- 有效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。
|
102 |
- 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码等方面的能力提升显著。
|
103 |
|
|
|
104 |
## InternLM2-1.8B
|
105 |
|
106 |
### 性能评测
|
107 |
|
108 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 对 InternLM2 在几个重要的评测集进行了评测 ,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
|
109 |
|
110 |
+
| 评测集 | InternLM2-1.8B | InternLM2-Chat-1.8B | InternLM2-7B | InternLM2-Chat-7B |
|
111 |
+
| --- | --- | --- | --- | --- |
|
112 |
+
| MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
|
113 |
+
| AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
|
114 |
+
| BBH | 37.5 | 35.2 | 65.0 | 61.2 |
|
115 |
+
| GSM8K | 31.2 | 39.7 | 70.8 | 70.7 |
|
116 |
+
| MATH | 5.6 | 11.8 | 20.2 | 23.0 |
|
117 |
+
| HumanEval | 25.0 | 32.9 | 43.3 | 59.8 |
|
118 |
+
| MBPP(Sanitized) | 22.2 | 23.2 | 51.8 | 51.4 |
|
119 |
|
120 |
- 以上评测结果基于 [OpenCompass](https://github.com/open-compass/opencompass) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/open-compass/opencompass) 中提供的配置文件。
|
121 |
- 评测数据会因 [OpenCompass](https://github.com/open-compass/opencompass) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/open-compass/opencompass) 最新版的评测结果为主。
|
|
|
145 |
|
146 |
## 开源许可证
|
147 |
|
148 |
+
本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 <[email protected]>。
|