--- quantized_by: iproskurina base_model_relation: quantized tags: - gptq - 4-bit language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu license: bigscience-bloom-rail-1.0 model_name: bloom-7b1 pipeline_tag: text-generation inference: false model_creator: bigscience model_type: bloom base_model: bigscience/bloom-7b1 --- # 🌸 BLOOM 7b1 - GPTQ - Model creator: [BigScience](https://huggingface.co/bigscience) - Original model: [BLOOM 7b1](https://huggingface.co/bigscience/bloom-7b1) **Quantization details** **All quantization parameters were taken from [GPTQ paper](https://arxiv.org/abs/2210.17323).** GPTQ calibration data consisted of 128 random 2048 token segments from the [C4 dataset](https://huggingface.co/datasets/c4). The grouping size used for quantization is equal to 128. ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoTokenizer, TextGenerationPipeline,AutoModelForCausalLM from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig pretrained_model_dir = "iproskurina/bloom-7b1-gptq-4bit" tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(pretrained_model_dir, device="cuda:0", model_basename="model") pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) print(pipeline("auto-gptq is")[0]["generated_text"]) ```