--- license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-small-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6875 --- # swinv2-small-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2717 - Accuracy: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.6579 | 0.6339 | | No log | 2.0 | 8 | 0.7129 | 0.5 | | 0.6364 | 3.0 | 12 | 0.6774 | 0.5982 | | 0.6364 | 4.0 | 16 | 0.6584 | 0.6786 | | 0.3486 | 5.0 | 20 | 0.6864 | 0.6786 | | 0.3486 | 6.0 | 24 | 0.8473 | 0.6429 | | 0.3486 | 7.0 | 28 | 0.9735 | 0.6339 | | 0.1224 | 8.0 | 32 | 0.8121 | 0.6964 | | 0.1224 | 9.0 | 36 | 1.2379 | 0.6429 | | 0.0424 | 10.0 | 40 | 1.1585 | 0.6875 | | 0.0424 | 11.0 | 44 | 1.5274 | 0.6161 | | 0.0424 | 12.0 | 48 | 1.1415 | 0.6607 | | 0.0353 | 13.0 | 52 | 1.4422 | 0.6518 | | 0.0353 | 14.0 | 56 | 1.6677 | 0.625 | | 0.0141 | 15.0 | 60 | 1.1960 | 0.6696 | | 0.0141 | 16.0 | 64 | 1.5515 | 0.625 | | 0.0141 | 17.0 | 68 | 1.7990 | 0.6161 | | 0.0135 | 18.0 | 72 | 1.4437 | 0.6607 | | 0.0135 | 19.0 | 76 | 1.2816 | 0.7054 | | 0.0073 | 20.0 | 80 | 1.2717 | 0.6875 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2