mikato commited on
Commit
bb8af86
1 Parent(s): 8ceae27

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.41 +/- 0.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f218bbb608c2ce5523b3bf9fc5b44807d7e770548af54a1eaac6a4029e236b2e
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5636faa60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fe5636f9510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677158382334255009,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnoXv89XxL32FWE/mP97vxxMuD+MVTU998LJPjhWcL4c/409DVgeP1HNuL6lo7g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]]",
60
+ "desired_goal": "[[-0.5917171 -0.09587061 0.87924135]\n [-0.9843688 1.4398227 0.04427104]\n [ 0.3940656 -0.2347039 0.06933424]\n [ 0.61853105 -0.36094144 1.442494 ]]",
61
+ "observation": "[[ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1gENvpywnT3CrSA+ABMLvQEU2T1o2Qk+RpUyvTtPML21oxI+nOsHPnZ/oz3BisE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.13770232 0.07699701 0.15691283]\n [-0.03395367 0.10599519 0.1346184 ]\n [-0.04359939 -0.04304431 0.14320262]\n [ 0.13273472 0.07983296 0.09450293]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxk0NNJ9z/b+UhpRSlIwBbJRLMowBdJRHQKblvZFG5MF1fZQoaAZoCWgPQwjqIK8Hk6L6v5SGlFKUaBVLMmgWR0Cm5YCSzPa+dX2UKGgGaAloD0MIeQQ3UrZI+L+UhpRSlGgVSzJoFkdApuVDlijL0XV9lChoBmgJaA9DCB767laWCAfAlIaUUpRoFUsyaBZHQKblBxeb/fh1fZQoaAZoCWgPQwifAIqRJfMCwJSGlFKUaBVLMmgWR0Cm5rnrIHTrdX2UKGgGaAloD0MI+ROVDWuq97+UhpRSlGgVSzJoFkdApuZ8+X7cf3V9lChoBmgJaA9DCML7qlyoHADAlIaUUpRoFUsyaBZHQKbmQAsCkoF1fZQoaAZoCWgPQwjzc0NTdrr0v5SGlFKUaBVLMmgWR0Cm5gNvn8sMdX2UKGgGaAloD0MI7L34oj0eA8CUhpRSlGgVSzJoFkdApufBFb3XZ3V9lChoBmgJaA9DCDsYsU8ARf2/lIaUUpRoFUsyaBZHQKbnhH4oJAt1fZQoaAZoCWgPQwhckgN2NRkCwJSGlFKUaBVLMmgWR0Cm50hdUsFudX2UKGgGaAloD0MIdQXbiCd7CcCUhpRSlGgVSzJoFkdApucMcMmWt3V9lChoBmgJaA9DCEbNV8nHTgPAlIaUUpRoFUsyaBZHQKbovIEr5Ip1fZQoaAZoCWgPQwgEjZlEvcAHwJSGlFKUaBVLMmgWR0Cm6H+r+5vtdX2UKGgGaAloD0MIJGO1+X/V/L+UhpRSlGgVSzJoFkdApuhC35N47nV9lChoBmgJaA9DCJ+tg4O9Cfu/lIaUUpRoFUsyaBZHQKboBjpcHGF1fZQoaAZoCWgPQwhIaqFkcmoGwJSGlFKUaBVLMmgWR0Cm6cBHbypadX2UKGgGaAloD0MIIAiQoWOnBMCUhpRSlGgVSzJoFkdApumDHZK3/nV9lChoBmgJaA9DCBe2ZisvOf2/lIaUUpRoFUsyaBZHQKbpRkvsZ511fZQoaAZoCWgPQwg8+IkD6DcBwJSGlFKUaBVLMmgWR0Cm6QmHP/rCdX2UKGgGaAloD0MIOiNKe4OPAMCUhpRSlGgVSzJoFkdApurNJ4B3inV9lChoBmgJaA9DCIHOpE3VfQbAlIaUUpRoFUsyaBZHQKbqkCQLeAN1fZQoaAZoCWgPQwhN+RBUjT4BwJSGlFKUaBVLMmgWR0Cm6lMt9QXRdX2UKGgGaAloD0MIppvEILBSCsCUhpRSlGgVSzJoFkdApuoWfNA1N3V9lChoBmgJaA9DCAM+P4wQXvu/lIaUUpRoFUsyaBZHQKbrzuhK15V1fZQoaAZoCWgPQwiRRgVOtkH/v5SGlFKUaBVLMmgWR0Cm65HWSU1RdX2UKGgGaAloD0MImODUB5K38r+UhpRSlGgVSzJoFkdAputU6BAfMnV9lChoBmgJaA9DCOse2Vw1j/q/lIaUUpRoFUsyaBZHQKbrGC2+fyx1fZQoaAZoCWgPQwj92vrpP+v9v5SGlFKUaBVLMmgWR0Cm7MiRfWtmdX2UKGgGaAloD0MIOgSOBBrs/r+UhpRSlGgVSzJoFkdApuyLwpe/pXV9lChoBmgJaA9DCJQvaCEBI/6/lIaUUpRoFUsyaBZHQKbsTwwTM7l1fZQoaAZoCWgPQwin6h7ZXLUBwJSGlFKUaBVLMmgWR0Cm7BJpWV/udX2UKGgGaAloD0MIelG7XwVoEsCUhpRSlGgVSzJoFkdApu3Pttygf3V9lChoBmgJaA9DCLHh6ZWyDADAlIaUUpRoFUsyaBZHQKbtksUZeiV1fZQoaAZoCWgPQwjEl4kipE4AwJSGlFKUaBVLMmgWR0Cm7VYWDYh/dX2UKGgGaAloD0MIIjgu46ZG9r+UhpRSlGgVSzJoFkdApu0ZTIeYD3V9lChoBmgJaA9DCNrk8Eknkve/lIaUUpRoFUsyaBZHQKbvAQxN7Bx1fZQoaAZoCWgPQwgteTwtP7D5v5SGlFKUaBVLMmgWR0Cm7sUKZ2IPdX2UKGgGaAloD0MILLgf8MAA9b+UhpRSlGgVSzJoFkdApu6ItFrmAHV9lChoBmgJaA9DCF4UPfAxWADAlIaUUpRoFUsyaBZHQKbuTXbuc+d1fZQoaAZoCWgPQwiqK5/leXABwJSGlFKUaBVLMmgWR0Cm8K09IPK/dX2UKGgGaAloD0MIYAZjRKJQ87+UhpRSlGgVSzJoFkdApvBw4dZJTXV9lChoBmgJaA9DCPsD5bZ9zwXAlIaUUpRoFUsyaBZHQKbwNRw6ySp1fZQoaAZoCWgPQwg08+SaAnkDwJSGlFKUaBVLMmgWR0Cm7/i8OCoTdX2UKGgGaAloD0MIvvp46LubAMCUhpRSlGgVSzJoFkdApvI2fPHDJnV9lChoBmgJaA9DCDzAkxYu6/O/lIaUUpRoFUsyaBZHQKbx+nw5NoJ1fZQoaAZoCWgPQwhS7j7HR6sHwJSGlFKUaBVLMmgWR0Cm8b6Q/5ckdX2UKGgGaAloD0MIXHNH/8t1AMCUhpRSlGgVSzJoFkdApvGCL876pHV9lChoBmgJaA9DCEg17PfEev+/lIaUUpRoFUsyaBZHQKbz1DWsijd1fZQoaAZoCWgPQwi5xfzc0BT0v5SGlFKUaBVLMmgWR0Cm85fBeokzdX2UKGgGaAloD0MI5Lz/jxNm+b+UhpRSlGgVSzJoFkdApvNb7EYO2HV9lChoBmgJaA9DCCeh9IWQkwTAlIaUUpRoFUsyaBZHQKbzIAq/dqN1fZQoaAZoCWgPQwhzg6EOK/wDwJSGlFKUaBVLMmgWR0Cm9YG+bmU4dX2UKGgGaAloD0MIx5+obFjTAcCUhpRSlGgVSzJoFkdApvVFzbN8mnV9lChoBmgJaA9DCD2dK0oJYQjAlIaUUpRoFUsyaBZHQKb1CfUWl/J1fZQoaAZoCWgPQwj9L9eiBej3v5SGlFKUaBVLMmgWR0Cm9M4EOiFkdX2UKGgGaAloD0MIV19dFaiF+b+UhpRSlGgVSzJoFkdApvdSmIj4YnV9lChoBmgJaA9DCKwahLndy/u/lIaUUpRoFUsyaBZHQKb3FmrbQC11fZQoaAZoCWgPQwjlDpvIzCUDwJSGlFKUaBVLMmgWR0Cm9toS+QEIdX2UKGgGaAloD0MIz2irksi+A8CUhpRSlGgVSzJoFkdApvae9YfW+XV9lChoBmgJaA9DCIKpZtZSIAbAlIaUUpRoFUsyaBZHQKb4/N6gM+h1fZQoaAZoCWgPQwg9f9qoTkcCwJSGlFKUaBVLMmgWR0Cm+MAD7qIKdX2UKGgGaAloD0MI+N7foL16CcCUhpRSlGgVSzJoFkdApviDPWxyGXV9lChoBmgJaA9DCBea6zTS0hHAlIaUUpRoFUsyaBZHQKb4RqgRK6F1fZQoaAZoCWgPQwh6U5EKYwsAwJSGlFKUaBVLMmgWR0Cm+fjtG/etdX2UKGgGaAloD0MIKCmwAKZsDsCUhpRSlGgVSzJoFkdApvm70OEuhHV9lChoBmgJaA9DCPZ698d7lfe/lIaUUpRoFUsyaBZHQKb5fumaYu11fZQoaAZoCWgPQwgo1qnyPQMIwJSGlFKUaBVLMmgWR0Cm+UJRO1v3dX2UKGgGaAloD0MIbatZZ3xf/7+UhpRSlGgVSzJoFkdApvrrIRywOnV9lChoBmgJaA9DCKJhMepaWwPAlIaUUpRoFUsyaBZHQKb6rjWkJrt1fZQoaAZoCWgPQwhy+nq+ZrkJwJSGlFKUaBVLMmgWR0Cm+nE9ECvHdX2UKGgGaAloD0MIniXICKhwC8CUhpRSlGgVSzJoFkdApvo0sMAmzHV9lChoBmgJaA9DCCL/zCA+kArAlIaUUpRoFUsyaBZHQKb77ddE9dN1fZQoaAZoCWgPQwgG9wMeGOAFwJSGlFKUaBVLMmgWR0Cm+7CyyD7JdX2UKGgGaAloD0MIFCUhkbZRDsCUhpRSlGgVSzJoFkdApvt0AHVwxXV9lChoBmgJaA9DCAuz0M5pVvi/lIaUUpRoFUsyaBZHQKb7Nze40/J1fZQoaAZoCWgPQwh4mPbN/dUFwJSGlFKUaBVLMmgWR0Cm/OTaCcwydX2UKGgGaAloD0MI2qhOB7Je/b+UhpRSlGgVSzJoFkdApvyn3vhIfHV9lChoBmgJaA9DCJy/CYUIeAbAlIaUUpRoFUsyaBZHQKb8awljVhF1fZQoaAZoCWgPQwhFY+3vbE/7v5SGlFKUaBVLMmgWR0Cm/C5uAI6bdX2UKGgGaAloD0MIYp0q3zMS/7+UhpRSlGgVSzJoFkdApv3vYUWVNnV9lChoBmgJaA9DCJC+SdOgqP2/lIaUUpRoFUsyaBZHQKb9sjTKDCh1fZQoaAZoCWgPQwj0N6EQAYcCwJSGlFKUaBVLMmgWR0Cm/XVuivgWdX2UKGgGaAloD0MIGXWtvU+VBsCUhpRSlGgVSzJoFkdApv04oAn2I3V9lChoBmgJaA9DCHbicrwCEQrAlIaUUpRoFUsyaBZHQKb+93X7LuB1fZQoaAZoCWgPQwg+XHLcKZ33v5SGlFKUaBVLMmgWR0Cm/rpPqLTAdX2UKGgGaAloD0MIqrUwC+2cA8CUhpRSlGgVSzJoFkdApv59senyeHV9lChoBmgJaA9DCEW3XtODwve/lIaUUpRoFUsyaBZHQKb+QOAAhjh1fZQoaAZoCWgPQwgJa2PshAcSwJSGlFKUaBVLMmgWR0Cm//+36Q/5dX2UKGgGaAloD0MIWFcFajF4+r+UhpRSlGgVSzJoFkdApv/CmO2iL3V9lChoBmgJaA9DCOY8Y1+yEQHAlIaUUpRoFUsyaBZHQKb/hbX6InB1fZQoaAZoCWgPQwheKjbmdQT/v5SGlFKUaBVLMmgWR0Cm/0jzAeq8dX2UKGgGaAloD0MI8tJNYhD4EsCUhpRSlGgVSzJoFkdApwEC7VawEHV9lChoBmgJaA9DCGCuRQvQtva/lIaUUpRoFUsyaBZHQKcAxcoH9m91fZQoaAZoCWgPQwgoDMo0mvwQwJSGlFKUaBVLMmgWR0CnAIkidJ8OdX2UKGgGaAloD0MIW5caoZ+JCcCUhpRSlGgVSzJoFkdApwBMt/WlM3V9lChoBmgJaA9DCKQ0m8dhUAHAlIaUUpRoFUsyaBZHQKcCCAEt/Wl1fZQoaAZoCWgPQwhS19r7VLUOwJSGlFKUaBVLMmgWR0CnAcr2QGOddX2UKGgGaAloD0MIvHmqQ24GDcCUhpRSlGgVSzJoFkdApwGOhbnoxHV9lChoBmgJaA9DCDEIrBxaxALAlIaUUpRoFUsyaBZHQKcBUj5bhWJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9a5151fd9d70dd21d864972d35c44d499aaed8f0d23845dc13eedd09f38c34
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b990914f8ea895fa24284a296929d9db0f5ef5267d5800f3c42659cbb43808f1
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5636faa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe5636f9510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677158382334255009, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lHXbPkrv1bv+aBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnoXv89XxL32FWE/mP97vxxMuD+MVTU998LJPjhWcL4c/409DVgeP1HNuL6lo7g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUdds+Su/Vu/5oED83im28Ukaeun8/PruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]\n [ 0.42863142 -0.00652877 0.56410205]]", "desired_goal": "[[-0.5917171 -0.09587061 0.87924135]\n [-0.9843688 1.4398227 0.04427104]\n [ 0.3940656 -0.2347039 0.06933424]\n [ 0.61853105 -0.36094144 1.442494 ]]", "observation": "[[ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]\n [ 0.42863142 -0.00652877 0.56410205 -0.01449829 -0.00120754 -0.00290295]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1gENvpywnT3CrSA+ABMLvQEU2T1o2Qk+RpUyvTtPML21oxI+nOsHPnZ/oz3BisE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13770232 0.07699701 0.15691283]\n [-0.03395367 0.10599519 0.1346184 ]\n [-0.04359939 -0.04304431 0.14320262]\n [ 0.13273472 0.07983296 0.09450293]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxk0NNJ9z/b+UhpRSlIwBbJRLMowBdJRHQKblvZFG5MF1fZQoaAZoCWgPQwjqIK8Hk6L6v5SGlFKUaBVLMmgWR0Cm5YCSzPa+dX2UKGgGaAloD0MIeQQ3UrZI+L+UhpRSlGgVSzJoFkdApuVDlijL0XV9lChoBmgJaA9DCB767laWCAfAlIaUUpRoFUsyaBZHQKblBxeb/fh1fZQoaAZoCWgPQwifAIqRJfMCwJSGlFKUaBVLMmgWR0Cm5rnrIHTrdX2UKGgGaAloD0MI+ROVDWuq97+UhpRSlGgVSzJoFkdApuZ8+X7cf3V9lChoBmgJaA9DCML7qlyoHADAlIaUUpRoFUsyaBZHQKbmQAsCkoF1fZQoaAZoCWgPQwjzc0NTdrr0v5SGlFKUaBVLMmgWR0Cm5gNvn8sMdX2UKGgGaAloD0MI7L34oj0eA8CUhpRSlGgVSzJoFkdApufBFb3XZ3V9lChoBmgJaA9DCDsYsU8ARf2/lIaUUpRoFUsyaBZHQKbnhH4oJAt1fZQoaAZoCWgPQwhckgN2NRkCwJSGlFKUaBVLMmgWR0Cm50hdUsFudX2UKGgGaAloD0MIdQXbiCd7CcCUhpRSlGgVSzJoFkdApucMcMmWt3V9lChoBmgJaA9DCEbNV8nHTgPAlIaUUpRoFUsyaBZHQKbovIEr5Ip1fZQoaAZoCWgPQwgEjZlEvcAHwJSGlFKUaBVLMmgWR0Cm6H+r+5vtdX2UKGgGaAloD0MIJGO1+X/V/L+UhpRSlGgVSzJoFkdApuhC35N47nV9lChoBmgJaA9DCJ+tg4O9Cfu/lIaUUpRoFUsyaBZHQKboBjpcHGF1fZQoaAZoCWgPQwhIaqFkcmoGwJSGlFKUaBVLMmgWR0Cm6cBHbypadX2UKGgGaAloD0MIIAiQoWOnBMCUhpRSlGgVSzJoFkdApumDHZK3/nV9lChoBmgJaA9DCBe2ZisvOf2/lIaUUpRoFUsyaBZHQKbpRkvsZ511fZQoaAZoCWgPQwg8+IkD6DcBwJSGlFKUaBVLMmgWR0Cm6QmHP/rCdX2UKGgGaAloD0MIOiNKe4OPAMCUhpRSlGgVSzJoFkdApurNJ4B3inV9lChoBmgJaA9DCIHOpE3VfQbAlIaUUpRoFUsyaBZHQKbqkCQLeAN1fZQoaAZoCWgPQwhN+RBUjT4BwJSGlFKUaBVLMmgWR0Cm6lMt9QXRdX2UKGgGaAloD0MIppvEILBSCsCUhpRSlGgVSzJoFkdApuoWfNA1N3V9lChoBmgJaA9DCAM+P4wQXvu/lIaUUpRoFUsyaBZHQKbrzuhK15V1fZQoaAZoCWgPQwiRRgVOtkH/v5SGlFKUaBVLMmgWR0Cm65HWSU1RdX2UKGgGaAloD0MImODUB5K38r+UhpRSlGgVSzJoFkdAputU6BAfMnV9lChoBmgJaA9DCOse2Vw1j/q/lIaUUpRoFUsyaBZHQKbrGC2+fyx1fZQoaAZoCWgPQwj92vrpP+v9v5SGlFKUaBVLMmgWR0Cm7MiRfWtmdX2UKGgGaAloD0MIOgSOBBrs/r+UhpRSlGgVSzJoFkdApuyLwpe/pXV9lChoBmgJaA9DCJQvaCEBI/6/lIaUUpRoFUsyaBZHQKbsTwwTM7l1fZQoaAZoCWgPQwin6h7ZXLUBwJSGlFKUaBVLMmgWR0Cm7BJpWV/udX2UKGgGaAloD0MIelG7XwVoEsCUhpRSlGgVSzJoFkdApu3Pttygf3V9lChoBmgJaA9DCLHh6ZWyDADAlIaUUpRoFUsyaBZHQKbtksUZeiV1fZQoaAZoCWgPQwjEl4kipE4AwJSGlFKUaBVLMmgWR0Cm7VYWDYh/dX2UKGgGaAloD0MIIjgu46ZG9r+UhpRSlGgVSzJoFkdApu0ZTIeYD3V9lChoBmgJaA9DCNrk8Eknkve/lIaUUpRoFUsyaBZHQKbvAQxN7Bx1fZQoaAZoCWgPQwgteTwtP7D5v5SGlFKUaBVLMmgWR0Cm7sUKZ2IPdX2UKGgGaAloD0MILLgf8MAA9b+UhpRSlGgVSzJoFkdApu6ItFrmAHV9lChoBmgJaA9DCF4UPfAxWADAlIaUUpRoFUsyaBZHQKbuTXbuc+d1fZQoaAZoCWgPQwiqK5/leXABwJSGlFKUaBVLMmgWR0Cm8K09IPK/dX2UKGgGaAloD0MIYAZjRKJQ87+UhpRSlGgVSzJoFkdApvBw4dZJTXV9lChoBmgJaA9DCPsD5bZ9zwXAlIaUUpRoFUsyaBZHQKbwNRw6ySp1fZQoaAZoCWgPQwg08+SaAnkDwJSGlFKUaBVLMmgWR0Cm7/i8OCoTdX2UKGgGaAloD0MIvvp46LubAMCUhpRSlGgVSzJoFkdApvI2fPHDJnV9lChoBmgJaA9DCDzAkxYu6/O/lIaUUpRoFUsyaBZHQKbx+nw5NoJ1fZQoaAZoCWgPQwhS7j7HR6sHwJSGlFKUaBVLMmgWR0Cm8b6Q/5ckdX2UKGgGaAloD0MIXHNH/8t1AMCUhpRSlGgVSzJoFkdApvGCL876pHV9lChoBmgJaA9DCEg17PfEev+/lIaUUpRoFUsyaBZHQKbz1DWsijd1fZQoaAZoCWgPQwi5xfzc0BT0v5SGlFKUaBVLMmgWR0Cm85fBeokzdX2UKGgGaAloD0MI5Lz/jxNm+b+UhpRSlGgVSzJoFkdApvNb7EYO2HV9lChoBmgJaA9DCCeh9IWQkwTAlIaUUpRoFUsyaBZHQKbzIAq/dqN1fZQoaAZoCWgPQwhzg6EOK/wDwJSGlFKUaBVLMmgWR0Cm9YG+bmU4dX2UKGgGaAloD0MIx5+obFjTAcCUhpRSlGgVSzJoFkdApvVFzbN8mnV9lChoBmgJaA9DCD2dK0oJYQjAlIaUUpRoFUsyaBZHQKb1CfUWl/J1fZQoaAZoCWgPQwj9L9eiBej3v5SGlFKUaBVLMmgWR0Cm9M4EOiFkdX2UKGgGaAloD0MIV19dFaiF+b+UhpRSlGgVSzJoFkdApvdSmIj4YnV9lChoBmgJaA9DCKwahLndy/u/lIaUUpRoFUsyaBZHQKb3FmrbQC11fZQoaAZoCWgPQwjlDpvIzCUDwJSGlFKUaBVLMmgWR0Cm9toS+QEIdX2UKGgGaAloD0MIz2irksi+A8CUhpRSlGgVSzJoFkdApvae9YfW+XV9lChoBmgJaA9DCIKpZtZSIAbAlIaUUpRoFUsyaBZHQKb4/N6gM+h1fZQoaAZoCWgPQwg9f9qoTkcCwJSGlFKUaBVLMmgWR0Cm+MAD7qIKdX2UKGgGaAloD0MI+N7foL16CcCUhpRSlGgVSzJoFkdApviDPWxyGXV9lChoBmgJaA9DCBea6zTS0hHAlIaUUpRoFUsyaBZHQKb4RqgRK6F1fZQoaAZoCWgPQwh6U5EKYwsAwJSGlFKUaBVLMmgWR0Cm+fjtG/etdX2UKGgGaAloD0MIKCmwAKZsDsCUhpRSlGgVSzJoFkdApvm70OEuhHV9lChoBmgJaA9DCPZ698d7lfe/lIaUUpRoFUsyaBZHQKb5fumaYu11fZQoaAZoCWgPQwgo1qnyPQMIwJSGlFKUaBVLMmgWR0Cm+UJRO1v3dX2UKGgGaAloD0MIbatZZ3xf/7+UhpRSlGgVSzJoFkdApvrrIRywOnV9lChoBmgJaA9DCKJhMepaWwPAlIaUUpRoFUsyaBZHQKb6rjWkJrt1fZQoaAZoCWgPQwhy+nq+ZrkJwJSGlFKUaBVLMmgWR0Cm+nE9ECvHdX2UKGgGaAloD0MIniXICKhwC8CUhpRSlGgVSzJoFkdApvo0sMAmzHV9lChoBmgJaA9DCCL/zCA+kArAlIaUUpRoFUsyaBZHQKb77ddE9dN1fZQoaAZoCWgPQwgG9wMeGOAFwJSGlFKUaBVLMmgWR0Cm+7CyyD7JdX2UKGgGaAloD0MIFCUhkbZRDsCUhpRSlGgVSzJoFkdApvt0AHVwxXV9lChoBmgJaA9DCAuz0M5pVvi/lIaUUpRoFUsyaBZHQKb7Nze40/J1fZQoaAZoCWgPQwh4mPbN/dUFwJSGlFKUaBVLMmgWR0Cm/OTaCcwydX2UKGgGaAloD0MI2qhOB7Je/b+UhpRSlGgVSzJoFkdApvyn3vhIfHV9lChoBmgJaA9DCJy/CYUIeAbAlIaUUpRoFUsyaBZHQKb8awljVhF1fZQoaAZoCWgPQwhFY+3vbE/7v5SGlFKUaBVLMmgWR0Cm/C5uAI6bdX2UKGgGaAloD0MIYp0q3zMS/7+UhpRSlGgVSzJoFkdApv3vYUWVNnV9lChoBmgJaA9DCJC+SdOgqP2/lIaUUpRoFUsyaBZHQKb9sjTKDCh1fZQoaAZoCWgPQwj0N6EQAYcCwJSGlFKUaBVLMmgWR0Cm/XVuivgWdX2UKGgGaAloD0MIGXWtvU+VBsCUhpRSlGgVSzJoFkdApv04oAn2I3V9lChoBmgJaA9DCHbicrwCEQrAlIaUUpRoFUsyaBZHQKb+93X7LuB1fZQoaAZoCWgPQwg+XHLcKZ33v5SGlFKUaBVLMmgWR0Cm/rpPqLTAdX2UKGgGaAloD0MIqrUwC+2cA8CUhpRSlGgVSzJoFkdApv59senyeHV9lChoBmgJaA9DCEW3XtODwve/lIaUUpRoFUsyaBZHQKb+QOAAhjh1fZQoaAZoCWgPQwgJa2PshAcSwJSGlFKUaBVLMmgWR0Cm//+36Q/5dX2UKGgGaAloD0MIWFcFajF4+r+UhpRSlGgVSzJoFkdApv/CmO2iL3V9lChoBmgJaA9DCOY8Y1+yEQHAlIaUUpRoFUsyaBZHQKb/hbX6InB1fZQoaAZoCWgPQwheKjbmdQT/v5SGlFKUaBVLMmgWR0Cm/0jzAeq8dX2UKGgGaAloD0MI8tJNYhD4EsCUhpRSlGgVSzJoFkdApwEC7VawEHV9lChoBmgJaA9DCGCuRQvQtva/lIaUUpRoFUsyaBZHQKcAxcoH9m91fZQoaAZoCWgPQwgoDMo0mvwQwJSGlFKUaBVLMmgWR0CnAIkidJ8OdX2UKGgGaAloD0MIW5caoZ+JCcCUhpRSlGgVSzJoFkdApwBMt/WlM3V9lChoBmgJaA9DCKQ0m8dhUAHAlIaUUpRoFUsyaBZHQKcCCAEt/Wl1fZQoaAZoCWgPQwhS19r7VLUOwJSGlFKUaBVLMmgWR0CnAcr2QGOddX2UKGgGaAloD0MIvHmqQ24GDcCUhpRSlGgVSzJoFkdApwGOhbnoxHV9lChoBmgJaA9DCDEIrBxaxALAlIaUUpRoFUsyaBZHQKcBUj5bhWJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (751 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.4116980540566146, "std_reward": 0.7066372475186284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T14:09:15.870942"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:958a50de7ae5179c9ce7ea65426248697463f09b81e86e8949feacab6de66aa3
3
+ size 3056