|
import argparse |
|
import os |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
|
|
from api import TextToSpeech, load_conditioning |
|
from utils.audio import load_audio |
|
from utils.tokenizer import VoiceBpeTokenizer |
|
|
|
def split_and_recombine_text(texts, desired_length=200, max_len=300): |
|
|
|
texts = [s.strip() + "." for s in texts.split('.')] |
|
|
|
i = 0 |
|
while i < len(texts): |
|
ltxt = texts[i] |
|
if len(ltxt) >= desired_length or i == len(texts)-1: |
|
i += 1 |
|
continue |
|
if len(ltxt) + len(texts[i+1]) > max_len: |
|
i += 1 |
|
continue |
|
texts[i] = f'{ltxt} {texts[i+1]}' |
|
texts.pop(i+1) |
|
return texts |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
preselected_cond_voices = { |
|
'emma_stone': ['voices/emma_stone/1.wav','voices/emma_stone/2.wav','voices/emma_stone/3.wav'], |
|
'tom_hanks': ['voices/tom_hanks/1.wav','voices/tom_hanks/2.wav','voices/tom_hanks/3.wav'], |
|
'patrick_stewart': ['voices/patrick_stewart/1.wav','voices/patrick_stewart/2.wav','voices/patrick_stewart/3.wav','voices/patrick_stewart/4.wav'], |
|
} |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt") |
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='patrick_stewart') |
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128) |
|
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16) |
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/longform/') |
|
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='realistic') |
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
with open(args.textfile, 'r', encoding='utf-8') as f: |
|
text = ''.join([l for l in f.readlines()]) |
|
texts = split_and_recombine_text(text) |
|
|
|
tts = TextToSpeech(autoregressive_batch_size=args.batch_size) |
|
|
|
priors = [] |
|
for j, text in enumerate(texts): |
|
cond_paths = preselected_cond_voices[args.voice] |
|
conds = priors.copy() |
|
for cond_path in cond_paths: |
|
c = load_audio(cond_path, 22050) |
|
conds.append(c) |
|
gen = tts.tts_with_preset(text, conds, preset=args.generation_preset, num_autoregressive_samples=args.num_samples) |
|
torchaudio.save(os.path.join(args.output_path, f'{j}.wav'), gen.squeeze(0).cpu(), 24000) |
|
|
|
priors.append(torchaudio.functional.resample(gen, 24000, 22050).squeeze(0)) |
|
while len(priors) > 2: |
|
priors.pop(0) |
|
|
|
|