|
import torch |
|
from transformers import LogitsWarper |
|
|
|
|
|
class TypicalLogitsWarper(LogitsWarper): |
|
def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): |
|
self.filter_value = filter_value |
|
self.mass = mass |
|
self.min_tokens_to_keep = min_tokens_to_keep |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
normalized = torch.nn.functional.log_softmax(scores, dim=-1) |
|
p = torch.exp(normalized) |
|
ent = -(normalized * p).nansum(-1, keepdim=True) |
|
|
|
|
|
shifted_scores = torch.abs((-normalized) - ent) |
|
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False) |
|
sorted_logits = scores.gather(-1, sorted_indices) |
|
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) |
|
|
|
|
|
last_ind = (cumulative_probs < self.mass).sum(dim=1) |
|
last_ind[last_ind < 0] = 0 |
|
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1)) |
|
if self.min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 |
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
|
|
scores = scores.masked_fill(indices_to_remove, self.filter_value) |
|
return scores |