support latents into the diffusion decoder
Browse files- api.py +13 -8
- eval_multiple.py +1 -1
- models/autoregressive.py +29 -15
- models/diffusion_decoder.py +12 -5
- models/new_autoregressive.py +0 -286
api.py
CHANGED
@@ -117,7 +117,7 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|
117 |
cond_mels.append(cond_mel)
|
118 |
cond_mels = torch.stack(cond_mels, dim=1)
|
119 |
|
120 |
-
output_seq_len = mel_codes.shape[
|
121 |
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
122 |
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
123 |
|
@@ -151,11 +151,6 @@ class TextToSpeech:
|
|
151 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
152 |
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
153 |
|
154 |
-
self.diffusion_next = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
155 |
-
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
156 |
-
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
157 |
-
self.diffusion_next.load_state_dict(torch.load('.models/diffusion_next.pth'))
|
158 |
-
|
159 |
self.vocoder = UnivNetGenerator().cpu()
|
160 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
161 |
self.vocoder.eval(inference=True)
|
@@ -223,12 +218,22 @@ class TextToSpeech:
|
|
223 |
self.clip = self.clip.cpu()
|
224 |
del samples
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
print("Performing vocoding..")
|
227 |
wav_candidates = []
|
228 |
self.diffusion = self.diffusion.cuda()
|
229 |
self.vocoder = self.vocoder.cuda()
|
230 |
for b in range(best_results.shape[0]):
|
231 |
codes = best_results[b].unsqueeze(0)
|
|
|
232 |
|
233 |
# Find the first occurrence of the "calm" token and trim the codes to that.
|
234 |
ctokens = 0
|
@@ -238,10 +243,10 @@ class TextToSpeech:
|
|
238 |
else:
|
239 |
ctokens = 0
|
240 |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
241 |
-
|
242 |
break
|
243 |
|
244 |
-
mel = do_spectrogram_diffusion(self.diffusion, diffuser,
|
245 |
wav = self.vocoder.inference(mel)
|
246 |
wav_candidates.append(wav.cpu())
|
247 |
self.diffusion = self.diffusion.cpu()
|
|
|
117 |
cond_mels.append(cond_mel)
|
118 |
cond_mels = torch.stack(cond_mels, dim=1)
|
119 |
|
120 |
+
output_seq_len = mel_codes.shape[1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
121 |
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
122 |
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
123 |
|
|
|
151 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
152 |
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
153 |
|
|
|
|
|
|
|
|
|
|
|
154 |
self.vocoder = UnivNetGenerator().cpu()
|
155 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
156 |
self.vocoder.eval(inference=True)
|
|
|
218 |
self.clip = self.clip.cpu()
|
219 |
del samples
|
220 |
|
221 |
+
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
222 |
+
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
223 |
+
# results, but will increase memory usage.
|
224 |
+
self.autoregressive = self.autoregressive.cuda()
|
225 |
+
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
226 |
+
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
227 |
+
return_latent=True, clip_inputs=False)
|
228 |
+
self.autoregressive = self.autoregressive.cpu()
|
229 |
+
|
230 |
print("Performing vocoding..")
|
231 |
wav_candidates = []
|
232 |
self.diffusion = self.diffusion.cuda()
|
233 |
self.vocoder = self.vocoder.cuda()
|
234 |
for b in range(best_results.shape[0]):
|
235 |
codes = best_results[b].unsqueeze(0)
|
236 |
+
latents = best_latents[b].unsqueeze(0)
|
237 |
|
238 |
# Find the first occurrence of the "calm" token and trim the codes to that.
|
239 |
ctokens = 0
|
|
|
243 |
else:
|
244 |
ctokens = 0
|
245 |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
246 |
+
latents = latents[:, :k]
|
247 |
break
|
248 |
|
249 |
+
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature)
|
250 |
wav = self.vocoder.inference(mel)
|
251 |
wav_candidates.append(wav.cpu())
|
252 |
self.diffusion = self.diffusion.cpu()
|
eval_multiple.py
CHANGED
@@ -7,7 +7,7 @@ from utils.audio import load_audio
|
|
7 |
|
8 |
if __name__ == '__main__':
|
9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
10 |
-
outpath = 'D:\\tmp\\tortoise-tts-eval\\
|
11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
12 |
|
13 |
os.makedirs(outpath, exist_ok=True)
|
|
|
7 |
|
8 |
if __name__ == '__main__':
|
9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
10 |
+
outpath = 'D:\\tmp\\tortoise-tts-eval\\diverse_new_decoder_1'
|
11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
12 |
|
13 |
os.makedirs(outpath, exist_ok=True)
|
models/autoregressive.py
CHANGED
@@ -362,7 +362,7 @@ class UnifiedVoice(nn.Module):
|
|
362 |
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
363 |
return mel_input_tokens
|
364 |
|
365 |
-
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
|
366 |
if second_inputs is not None:
|
367 |
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
368 |
else:
|
@@ -374,6 +374,10 @@ class UnifiedVoice(nn.Module):
|
|
374 |
|
375 |
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
376 |
enc = self.final_norm(enc)
|
|
|
|
|
|
|
|
|
377 |
first_logits = enc[:, :first_inputs.shape[1]]
|
378 |
first_logits = first_head(first_logits)
|
379 |
first_logits = first_logits.permute(0,2,1)
|
@@ -385,7 +389,8 @@ class UnifiedVoice(nn.Module):
|
|
385 |
else:
|
386 |
return first_logits
|
387 |
|
388 |
-
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False
|
|
|
389 |
"""
|
390 |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
391 |
(actuated by `text_first`).
|
@@ -396,19 +401,23 @@ class UnifiedVoice(nn.Module):
|
|
396 |
mel_inputs: long tensor, (b,m)
|
397 |
wav_lengths: long tensor, (b,)
|
398 |
raw_mels: MEL float tensor (b,80,s)
|
399 |
-
"""
|
400 |
-
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
|
401 |
-
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
411 |
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
|
|
|
|
412 |
|
413 |
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
|
414 |
conds = []
|
@@ -427,10 +436,15 @@ class UnifiedVoice(nn.Module):
|
|
427 |
mel_inp = mel_codes
|
428 |
mel_emb = self.mel_embedding(mel_inp)
|
429 |
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
|
|
430 |
if text_first:
|
431 |
-
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
|
|
|
|
|
432 |
else:
|
433 |
-
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)
|
|
|
|
|
434 |
|
435 |
if return_attentions:
|
436 |
return mel_logits
|
|
|
362 |
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
363 |
return mel_input_tokens
|
364 |
|
365 |
+
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
|
366 |
if second_inputs is not None:
|
367 |
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
368 |
else:
|
|
|
374 |
|
375 |
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
376 |
enc = self.final_norm(enc)
|
377 |
+
|
378 |
+
if return_latent:
|
379 |
+
return enc[:, speech_conditioning_inputs.shape[1]:speech_conditioning_inputs.shape[1]+first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
|
380 |
+
|
381 |
first_logits = enc[:, :first_inputs.shape[1]]
|
382 |
first_logits = first_head(first_logits)
|
383 |
first_logits = first_logits.permute(0,2,1)
|
|
|
389 |
else:
|
390 |
return first_logits
|
391 |
|
392 |
+
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False,
|
393 |
+
return_latent=False, clip_inputs=True):
|
394 |
"""
|
395 |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
396 |
(actuated by `text_first`).
|
|
|
401 |
mel_inputs: long tensor, (b,m)
|
402 |
wav_lengths: long tensor, (b,)
|
403 |
raw_mels: MEL float tensor (b,80,s)
|
|
|
|
|
|
|
404 |
|
405 |
+
If return_attentions is specified, only logits are returned.
|
406 |
+
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
407 |
+
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality.
|
408 |
+
"""
|
409 |
+
if clip_inputs:
|
410 |
+
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
411 |
+
# chopping the inputs by the maximum actual length.
|
412 |
+
max_text_len = text_lengths.max()
|
413 |
+
text_inputs = text_inputs[:, :max_text_len]
|
414 |
+
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
415 |
+
mel_codes = mel_codes[:, :max_mel_len]
|
416 |
+
if raw_mels is not None:
|
417 |
+
raw_mels = raw_mels[:, :, :max_mel_len*4]
|
418 |
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
419 |
+
text_inputs = F.pad(text_inputs, (0,1), value=self.stop_text_token)
|
420 |
+
mel_codes = F.pad(mel_codes, (0,1), value=self.stop_mel_token)
|
421 |
|
422 |
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
|
423 |
conds = []
|
|
|
436 |
mel_inp = mel_codes
|
437 |
mel_emb = self.mel_embedding(mel_inp)
|
438 |
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
439 |
+
|
440 |
if text_first:
|
441 |
+
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent)
|
442 |
+
if return_latent:
|
443 |
+
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
444 |
else:
|
445 |
+
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent)
|
446 |
+
if return_latent:
|
447 |
+
return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
448 |
|
449 |
if return_attentions:
|
450 |
return mel_logits
|
models/diffusion_decoder.py
CHANGED
@@ -176,7 +176,13 @@ class DiffusionTts(nn.Module):
|
|
176 |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
177 |
)
|
178 |
self.code_norm = normalization(model_channels)
|
179 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
181 |
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
182 |
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
@@ -190,6 +196,7 @@ class DiffusionTts(nn.Module):
|
|
190 |
DiffusionLayer(model_channels, dropout, num_heads),
|
191 |
DiffusionLayer(model_channels, dropout, num_heads),
|
192 |
)
|
|
|
193 |
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
194 |
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
195 |
|
@@ -206,7 +213,7 @@ class DiffusionTts(nn.Module):
|
|
206 |
groups = {
|
207 |
'minicoder': list(self.contextual_embedder.parameters()),
|
208 |
'layers': list(self.layers.parameters()),
|
209 |
-
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.
|
210 |
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
211 |
'time_embed': list(self.time_embed.parameters()),
|
212 |
}
|
@@ -227,7 +234,7 @@ class DiffusionTts(nn.Module):
|
|
227 |
cond_emb = conds.mean(dim=-1)
|
228 |
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
229 |
if is_latent(aligned_conditioning):
|
230 |
-
code_emb = self.
|
231 |
else:
|
232 |
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
233 |
code_emb = self.code_converter(code_emb)
|
@@ -269,7 +276,7 @@ class DiffusionTts(nn.Module):
|
|
269 |
if conditioning_free:
|
270 |
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
271 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
272 |
-
unused_params.extend(list(self.
|
273 |
else:
|
274 |
if precomputed_aligned_embeddings is not None:
|
275 |
code_emb = precomputed_aligned_embeddings
|
@@ -278,7 +285,7 @@ class DiffusionTts(nn.Module):
|
|
278 |
if is_latent(aligned_conditioning):
|
279 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
280 |
else:
|
281 |
-
unused_params.extend(list(self.
|
282 |
|
283 |
unused_params.append(self.unconditioned_embedding)
|
284 |
|
|
|
176 |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
177 |
)
|
178 |
self.code_norm = normalization(model_channels)
|
179 |
+
self.latent_conditioner = nn.Sequential(
|
180 |
+
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
|
181 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
182 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
183 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
184 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
185 |
+
)
|
186 |
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
187 |
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
188 |
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
|
|
196 |
DiffusionLayer(model_channels, dropout, num_heads),
|
197 |
DiffusionLayer(model_channels, dropout, num_heads),
|
198 |
)
|
199 |
+
|
200 |
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
201 |
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
202 |
|
|
|
213 |
groups = {
|
214 |
'minicoder': list(self.contextual_embedder.parameters()),
|
215 |
'layers': list(self.layers.parameters()),
|
216 |
+
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()) + list(self.latent_conditioner.parameters()),
|
217 |
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
218 |
'time_embed': list(self.time_embed.parameters()),
|
219 |
}
|
|
|
234 |
cond_emb = conds.mean(dim=-1)
|
235 |
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
236 |
if is_latent(aligned_conditioning):
|
237 |
+
code_emb = self.latent_conditioner(aligned_conditioning)
|
238 |
else:
|
239 |
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
240 |
code_emb = self.code_converter(code_emb)
|
|
|
276 |
if conditioning_free:
|
277 |
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
278 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
279 |
+
unused_params.extend(list(self.latent_conditioner.parameters()))
|
280 |
else:
|
281 |
if precomputed_aligned_embeddings is not None:
|
282 |
code_emb = precomputed_aligned_embeddings
|
|
|
285 |
if is_latent(aligned_conditioning):
|
286 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
287 |
else:
|
288 |
+
unused_params.extend(list(self.latent_conditioner.parameters()))
|
289 |
|
290 |
unused_params.append(self.unconditioned_embedding)
|
291 |
|
models/new_autoregressive.py
DELETED
@@ -1,286 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from transformers import GPT2PreTrainedModel, GPT2Config
|
5 |
-
from models.xtransformers import TransformerWrapper, Encoder, Decoder
|
6 |
-
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
7 |
-
|
8 |
-
from models.arch_util import AttentionBlock
|
9 |
-
|
10 |
-
|
11 |
-
class InferenceModel(GPT2PreTrainedModel):
|
12 |
-
"""
|
13 |
-
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
|
14 |
-
this transformer.
|
15 |
-
"""
|
16 |
-
def __init__(self, model):
|
17 |
-
super().__init__(GPT2Config())
|
18 |
-
self.transformer = model
|
19 |
-
self.context = None
|
20 |
-
|
21 |
-
def parallelize(self, device_map=None):
|
22 |
-
# Not implemented.
|
23 |
-
pass
|
24 |
-
|
25 |
-
def deparallelize(self):
|
26 |
-
# Not implemented.
|
27 |
-
pass
|
28 |
-
|
29 |
-
def get_output_embeddings(self):
|
30 |
-
assert False, "Unsupported operation."
|
31 |
-
|
32 |
-
def set_output_embeddings(self, new_embeddings):
|
33 |
-
assert False, "Unsupported operation."
|
34 |
-
|
35 |
-
def store_context(self, context):
|
36 |
-
self.context = context
|
37 |
-
|
38 |
-
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
39 |
-
token_type_ids = kwargs.get("token_type_ids", None)
|
40 |
-
# only last token for inputs_ids if past is defined in kwargs
|
41 |
-
if past:
|
42 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
43 |
-
if token_type_ids is not None:
|
44 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
45 |
-
|
46 |
-
attention_mask = kwargs.get("attention_mask", None)
|
47 |
-
position_ids = kwargs.get("position_ids", None)
|
48 |
-
|
49 |
-
if attention_mask is not None and position_ids is None:
|
50 |
-
# create position_ids on the fly for batch generation
|
51 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
52 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
53 |
-
if past:
|
54 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
55 |
-
else:
|
56 |
-
position_ids = None
|
57 |
-
return {
|
58 |
-
"input_ids": input_ids,
|
59 |
-
"past_key_values": past,
|
60 |
-
"use_cache": kwargs.get("use_cache"),
|
61 |
-
"position_ids": position_ids,
|
62 |
-
"attention_mask": attention_mask,
|
63 |
-
"token_type_ids": token_type_ids,
|
64 |
-
}
|
65 |
-
|
66 |
-
def forward(
|
67 |
-
self,
|
68 |
-
input_ids=None,
|
69 |
-
past_key_values=None,
|
70 |
-
attention_mask=None,
|
71 |
-
token_type_ids=None,
|
72 |
-
position_ids=None,
|
73 |
-
head_mask=None,
|
74 |
-
inputs_embeds=None,
|
75 |
-
encoder_hidden_states=None,
|
76 |
-
encoder_attention_mask=None,
|
77 |
-
labels=None,
|
78 |
-
use_cache=None,
|
79 |
-
output_attentions=None,
|
80 |
-
output_hidden_states=None,
|
81 |
-
return_dict=None,
|
82 |
-
):
|
83 |
-
assert self.context is not None
|
84 |
-
assert inputs_embeds is None # Not supported by this inference model.
|
85 |
-
assert labels is None # Training not supported by this inference model.
|
86 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
87 |
-
|
88 |
-
out = self.transformer.decoder(input_ids, full_context=self.context, return_embeddings=True, past_key_values=past_key_values,
|
89 |
-
use_cache=use_cache, expected_seq_len=100)
|
90 |
-
if use_cache:
|
91 |
-
hidden_states, present_key_values = out
|
92 |
-
else:
|
93 |
-
hidden_states = out
|
94 |
-
present_key_values = None
|
95 |
-
logits = self.transformer.decoder.to_logits(hidden_states)
|
96 |
-
|
97 |
-
if not return_dict:
|
98 |
-
return (logits, )
|
99 |
-
|
100 |
-
return CausalLMOutputWithCrossAttentions(
|
101 |
-
loss=None,
|
102 |
-
logits=logits,
|
103 |
-
past_key_values=present_key_values,
|
104 |
-
hidden_states=hidden_states,
|
105 |
-
attentions=None,
|
106 |
-
cross_attentions=None,
|
107 |
-
)
|
108 |
-
|
109 |
-
@staticmethod
|
110 |
-
def _reorder_cache(past, beam_idx):
|
111 |
-
"""
|
112 |
-
This function is used to re-order the :obj:`past_key_values` cache if
|
113 |
-
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
114 |
-
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
115 |
-
"""
|
116 |
-
return tuple(
|
117 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
118 |
-
for layer_past in past
|
119 |
-
)
|
120 |
-
|
121 |
-
|
122 |
-
class ResBlock(nn.Module):
|
123 |
-
"""
|
124 |
-
Basic residual convolutional block that uses GroupNorm.
|
125 |
-
"""
|
126 |
-
def __init__(self, chan):
|
127 |
-
super().__init__()
|
128 |
-
self.net = nn.Sequential(
|
129 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
130 |
-
nn.GroupNorm(chan//8, chan),
|
131 |
-
nn.ReLU(),
|
132 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
133 |
-
nn.GroupNorm(chan//8, chan)
|
134 |
-
)
|
135 |
-
|
136 |
-
def forward(self, x):
|
137 |
-
return F.relu(self.net(x) + x)
|
138 |
-
|
139 |
-
|
140 |
-
class ConditioningEncoder(nn.Module):
|
141 |
-
def __init__(self,
|
142 |
-
spec_dim,
|
143 |
-
embedding_dim,
|
144 |
-
attn_blocks=6,
|
145 |
-
num_attn_heads=4,
|
146 |
-
do_checkpointing=False):
|
147 |
-
super().__init__()
|
148 |
-
attn = []
|
149 |
-
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
|
150 |
-
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
|
151 |
-
ResBlock(embedding_dim//2),
|
152 |
-
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
|
153 |
-
for a in range(attn_blocks):
|
154 |
-
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
155 |
-
self.attn = nn.Sequential(*attn)
|
156 |
-
self.dim = embedding_dim
|
157 |
-
|
158 |
-
def forward(self, x):
|
159 |
-
h = self.init(x)
|
160 |
-
h = self.attn(h)
|
161 |
-
return h.mean(dim=2)
|
162 |
-
|
163 |
-
|
164 |
-
class AutoregressiveCodegen(nn.Module):
|
165 |
-
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, dropout=.1):
|
166 |
-
super().__init__()
|
167 |
-
assert depth >= 8 # This is the minimum bound to support the context interleaving that happens later.
|
168 |
-
|
169 |
-
self.START_TOKEN=8192
|
170 |
-
self.STOP_TOKEN=8193
|
171 |
-
self.START_TEXT_TOKEN = 255
|
172 |
-
self.STOP_TEXT_TOKEN = 0
|
173 |
-
self.max_text_token_id = num_text_tokens
|
174 |
-
self.max_mel_token_id = num_mel_tokens
|
175 |
-
self.mel_embedding = ConditioningEncoder(80, model_dim, do_checkpointing=False)
|
176 |
-
self.encoder = TransformerWrapper(
|
177 |
-
num_tokens=num_text_tokens,
|
178 |
-
use_pos_emb=False,
|
179 |
-
max_seq_len=-1,
|
180 |
-
attn_layers = Encoder(
|
181 |
-
depth=depth,
|
182 |
-
heads=model_dim//64,
|
183 |
-
dim=model_dim,
|
184 |
-
attn_dropout=dropout,
|
185 |
-
ff_dropout=dropout,
|
186 |
-
use_rmsnorm=True,
|
187 |
-
ff_glu=True,
|
188 |
-
ff_mult=1,
|
189 |
-
rotary_pos_emb=True,
|
190 |
-
attn_rel_pos_bias=True,
|
191 |
-
))
|
192 |
-
self.encoder.norm = nn.Identity() # This layer and the next are unused.
|
193 |
-
self.encoder.to_logits = nn.Identity()
|
194 |
-
self.decoder = TransformerWrapper(
|
195 |
-
num_tokens=num_mel_tokens,
|
196 |
-
use_pos_emb=False,
|
197 |
-
max_seq_len=-1,
|
198 |
-
attn_layers=Decoder(
|
199 |
-
depth=depth,
|
200 |
-
heads=model_dim//64,
|
201 |
-
dim=model_dim,
|
202 |
-
attn_dropout=dropout,
|
203 |
-
ff_dropout=dropout,
|
204 |
-
use_rmsnorm=True,
|
205 |
-
ff_glu=True,
|
206 |
-
ff_mult=1,
|
207 |
-
rotary_pos_emb=True,
|
208 |
-
cross_attend=True,
|
209 |
-
attn_rel_pos_bias=True,
|
210 |
-
))
|
211 |
-
|
212 |
-
def get_grad_norm_parameter_groups(self):
|
213 |
-
return {
|
214 |
-
'encoder': list(self.encoder.parameters()),
|
215 |
-
'decoder': list(self.decoder.parameters()),
|
216 |
-
'minicoder': list(self.mel_embedding.parameters()),
|
217 |
-
}
|
218 |
-
|
219 |
-
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
|
220 |
-
assert text_codes.max() < self.max_text_token_id and text_codes.min() >= 0, f'Invalid text code encountered: {text_codes.max()}, {text_codes.min()}'
|
221 |
-
assert mel_codes.max() < self.max_mel_token_id and mel_codes.min() >= 0, f'Invalid mel code encountered: {mel_codes.max()}, {mel_codes.min()}'
|
222 |
-
|
223 |
-
# Format mel_codes with a stop token on the end.
|
224 |
-
mel_lengths = wav_lengths // 1024 + 1
|
225 |
-
for b in range(mel_codes.shape[0]):
|
226 |
-
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
|
227 |
-
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)
|
228 |
-
|
229 |
-
# Build the context
|
230 |
-
if len(conditioning_signal.shape) != 4:
|
231 |
-
conditioning_signal = conditioning_signal.unsqueeze(1)
|
232 |
-
cond_embs = []
|
233 |
-
for i in range(conditioning_signal.shape[1]):
|
234 |
-
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
|
235 |
-
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
236 |
-
# Since all positional embeddings are relative, it is (probably) important to "fix" the text with some permanent embeddings.
|
237 |
-
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
|
238 |
-
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
|
239 |
-
_, enc_text = self.encoder(text_codes, return_hiddens=True)
|
240 |
-
# Interleave cond_emb into the first few contexts.
|
241 |
-
full_context = enc_text
|
242 |
-
full_context[1] = cond_emb
|
243 |
-
full_context[3] = cond_emb
|
244 |
-
full_context[6] = cond_emb
|
245 |
-
|
246 |
-
# Execute the decoder
|
247 |
-
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
|
248 |
-
dec = self.decoder(dec_inputs, full_context=full_context)
|
249 |
-
if not return_loss:
|
250 |
-
return dec
|
251 |
-
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
|
252 |
-
return loss_mel
|
253 |
-
|
254 |
-
def generate(self, conditioning_signal, text_codes, max_tokens=256, **hf_generate_kwargs):
|
255 |
-
inference_model = InferenceModel(self)
|
256 |
-
# Build the context
|
257 |
-
if len(conditioning_signal.shape) != 4:
|
258 |
-
conditioning_signal = conditioning_signal.unsqueeze(1)
|
259 |
-
cond_embs = []
|
260 |
-
for i in range(conditioning_signal.shape[1]):
|
261 |
-
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
|
262 |
-
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
263 |
-
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
|
264 |
-
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
|
265 |
-
_, enc_text = self.encoder(text_codes, return_hiddens=True)
|
266 |
-
# Interleave cond_emb into the first few contexts.
|
267 |
-
full_context = enc_text
|
268 |
-
full_context[1] = cond_emb
|
269 |
-
full_context[3] = cond_emb
|
270 |
-
full_context[6] = cond_emb
|
271 |
-
inference_model.store_context(full_context)
|
272 |
-
|
273 |
-
gen = inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
|
274 |
-
max_length=max_tokens, output_attentions=False, return_dict_in_generate=True, use_cache=False,
|
275 |
-
**hf_generate_kwargs)
|
276 |
-
return gen.sequences
|
277 |
-
|
278 |
-
|
279 |
-
if __name__ == '__main__':
|
280 |
-
codegen = AutoregressiveCodegen(256, 10)
|
281 |
-
torch.save(codegen.state_dict(), 'sample.pth')
|
282 |
-
#codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
|
283 |
-
codegen(torch.randint(0,256, (2,200)),
|
284 |
-
torch.randn(2,80,120),
|
285 |
-
torch.randint(0,8192, (2,350)),
|
286 |
-
torch.tensor([192,350]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|