|
from typing import Dict |
|
from pyannote.audio import Pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
import torch |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger("MAXWELL") |
|
|
|
|
|
SAMPLE_RATE = 16000 |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipeline = Pipeline.from_pretrained("pyannote/[email protected]") |
|
|
|
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the deserialized audio file as bytes |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
|
|
logger.warning("MAXWELL") |
|
logger.warning(data) |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
|
|
audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE) |
|
audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0) |
|
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE} |
|
|
|
|
|
|
|
if parameters is not None: |
|
diarization = self.pipeline(pyannote_input, **parameters) |
|
else: |
|
diarization = self.pipeline(pyannote_input) |
|
|
|
|
|
processed_diarization = [ |
|
{"label": str(label), "start": str(segment.start), "stop": str(segment.end)} |
|
for segment, _, label in diarization.itertracks(yield_label=True) |
|
] |
|
|
|
return {"diarization": processed_diarization} |
|
|
|
|