josejointriple
commited on
Commit
•
14d9dcc
1
Parent(s):
af379fe
Upload DistilBertForSequenceClassification
Browse files- README.md +199 -0
- config.json +809 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,809 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "unknown",
|
13 |
+
"1": "2theloo",
|
14 |
+
"2": "365 Retail Markets",
|
15 |
+
"3": "A4 Brescia Padova",
|
16 |
+
"4": "AMZS",
|
17 |
+
"5": "ASFINAG",
|
18 |
+
"6": "ASICS",
|
19 |
+
"7": "ATAC",
|
20 |
+
"8": "AWS",
|
21 |
+
"9": "Abacus Cooperativa",
|
22 |
+
"10": "Adyen",
|
23 |
+
"11": "Aelia Duty Free",
|
24 |
+
"12": "Aida",
|
25 |
+
"13": "Alcott",
|
26 |
+
"14": "Alipay",
|
27 |
+
"15": "American Eagle Outfitter",
|
28 |
+
"16": "American Express",
|
29 |
+
"17": "Amorino",
|
30 |
+
"18": "Appart'City",
|
31 |
+
"19": "Arabica Coffee",
|
32 |
+
"20": "Areas",
|
33 |
+
"21": "Arenal",
|
34 |
+
"22": "Atlantsol\u00eda",
|
35 |
+
"23": "Atm.it",
|
36 |
+
"24": "AutoZone",
|
37 |
+
"25": "Avianca Airlines",
|
38 |
+
"26": "Avoca",
|
39 |
+
"27": "B+B Parkhaus",
|
40 |
+
"28": "BCC Roma",
|
41 |
+
"29": "BNP Paribas",
|
42 |
+
"30": "BVG",
|
43 |
+
"31": "Basic-Fit",
|
44 |
+
"32": "BayWa",
|
45 |
+
"33": "Bellaflora",
|
46 |
+
"34": "Best-One",
|
47 |
+
"35": "Bi1",
|
48 |
+
"36": "Bico de Xeado",
|
49 |
+
"37": "BigMat",
|
50 |
+
"38": "Bingo City Center",
|
51 |
+
"39": "Bird",
|
52 |
+
"40": "Block House",
|
53 |
+
"41": "Blokker",
|
54 |
+
"42": "Boursorama",
|
55 |
+
"43": "Brandy Melville",
|
56 |
+
"44": "Bricorama",
|
57 |
+
"45": "Buc-ee's",
|
58 |
+
"46": "BudgetAir",
|
59 |
+
"47": "Bund.de",
|
60 |
+
"48": "Bureau Vall\u00e9e",
|
61 |
+
"49": "Butlers",
|
62 |
+
"50": "Bwin",
|
63 |
+
"51": "B\u00e4ckerei Hoefer",
|
64 |
+
"52": "B\u00e4ckerei Terbuyken",
|
65 |
+
"53": "B\u00e4ckerei Werning",
|
66 |
+
"54": "B\u00e4ckermeister Haferkamp",
|
67 |
+
"55": "CAP-Markt",
|
68 |
+
"56": "CBA",
|
69 |
+
"57": "CVMaker.uk",
|
70 |
+
"58": "Cafe & Bar Celona",
|
71 |
+
"59": "Cafe del Sol",
|
72 |
+
"60": "Caja Rural",
|
73 |
+
"61": "Cake Box",
|
74 |
+
"62": "Calpam",
|
75 |
+
"63": "Calvin Klein",
|
76 |
+
"64": "Canteen",
|
77 |
+
"65": "Careem",
|
78 |
+
"66": "Caribou Coffee",
|
79 |
+
"67": "Carter's",
|
80 |
+
"68": "Casa del Libro",
|
81 |
+
"69": "Cats Protection",
|
82 |
+
"70": "Centauro Rent a Car",
|
83 |
+
"71": "Centrakor",
|
84 |
+
"72": "Checkers",
|
85 |
+
"73": "Cinemark",
|
86 |
+
"74": "Cineplex",
|
87 |
+
"75": "Cinesa",
|
88 |
+
"76": "Cineworld",
|
89 |
+
"77": "CitizenM",
|
90 |
+
"78": "City Gross",
|
91 |
+
"79": "City Market",
|
92 |
+
"80": "City of Quebec",
|
93 |
+
"81": "Coin.it",
|
94 |
+
"82": "Columbus Cafe",
|
95 |
+
"83": "Copa Airlines",
|
96 |
+
"84": "Credit Engine",
|
97 |
+
"85": "Crunchyroll",
|
98 |
+
"86": "Curzon",
|
99 |
+
"87": "DGFIP",
|
100 |
+
"88": "DPD",
|
101 |
+
"89": "DPMCB",
|
102 |
+
"90": "Daiso",
|
103 |
+
"91": "Day Today",
|
104 |
+
"92": "Dec\u00f2",
|
105 |
+
"93": "DeepL",
|
106 |
+
"94": "Deiters",
|
107 |
+
"95": "Der B\u00e4cker Ruetz",
|
108 |
+
"96": "Der Rundfunkbeitrag",
|
109 |
+
"97": "Deutsche Bank",
|
110 |
+
"98": "Deutsche Post",
|
111 |
+
"99": "Deutsche Rentenversicherung",
|
112 |
+
"100": "Digital River",
|
113 |
+
"101": "Disney+",
|
114 |
+
"102": "Dnata",
|
115 |
+
"103": "Dom Lek\u00f3w",
|
116 |
+
"104": "Dr Martens",
|
117 |
+
"105": "Dussmann",
|
118 |
+
"106": "Dyson",
|
119 |
+
"107": "E.ON",
|
120 |
+
"108": "EE",
|
121 |
+
"109": "EasyPark",
|
122 |
+
"110": "Ebl-Naturkost",
|
123 |
+
"111": "Eharmony",
|
124 |
+
"112": "Elior",
|
125 |
+
"113": "Emirates Leisure Retail",
|
126 |
+
"114": "Emmerys",
|
127 |
+
"115": "Enchilada",
|
128 |
+
"116": "Engie",
|
129 |
+
"117": "Enrique Tomas",
|
130 |
+
"118": "Ergo",
|
131 |
+
"119": "EsclatOil",
|
132 |
+
"120": "EuroPark",
|
133 |
+
"121": "Everest",
|
134 |
+
"122": "FEBO",
|
135 |
+
"123": "FairPrice",
|
136 |
+
"124": "Fina",
|
137 |
+
"125": "Fitinn",
|
138 |
+
"126": "FlixBus",
|
139 |
+
"127": "Footasylum",
|
140 |
+
"128": "Four Seasons",
|
141 |
+
"129": "Free People",
|
142 |
+
"130": "Freie Tankstelle",
|
143 |
+
"131": "G La Dalle",
|
144 |
+
"132": "GNC",
|
145 |
+
"133": "Galaxias",
|
146 |
+
"134": "Galaxus",
|
147 |
+
"135": "Gall & Gall",
|
148 |
+
"136": "Gedimat",
|
149 |
+
"137": "Geldmaat",
|
150 |
+
"138": "Generali",
|
151 |
+
"139": "Getgo",
|
152 |
+
"140": "Getr\u00e4nke Hoffmann",
|
153 |
+
"141": "GoDaddy",
|
154 |
+
"142": "Goldcar",
|
155 |
+
"143": "Google Fi",
|
156 |
+
"144": "Greffe du Tribunal",
|
157 |
+
"145": "Gucci",
|
158 |
+
"146": "Guess",
|
159 |
+
"147": "HD Hotels",
|
160 |
+
"148": "HSBC",
|
161 |
+
"149": "Hamburg Airport",
|
162 |
+
"150": "Hannaford",
|
163 |
+
"151": "Hans im Gl\u00fcck",
|
164 |
+
"152": "Harald Nyborg",
|
165 |
+
"153": "Hebe",
|
166 |
+
"154": "Heinemann",
|
167 |
+
"155": "HelloFresh",
|
168 |
+
"156": "Hermes",
|
169 |
+
"157": "Hilton Garden Inn",
|
170 |
+
"158": "Hilton Garden Inn Hotel",
|
171 |
+
"159": "Hiper Centro",
|
172 |
+
"160": "Holland & Barrett",
|
173 |
+
"161": "Hollister Co.",
|
174 |
+
"162": "Hollywood Bowl",
|
175 |
+
"163": "Hotel Barcel\u00f3",
|
176 |
+
"164": "Hotel Mama Shelter",
|
177 |
+
"165": "Hotel Silken",
|
178 |
+
"166": "Hudson",
|
179 |
+
"167": "Hugo Boss",
|
180 |
+
"168": "HungryPanda",
|
181 |
+
"169": "IC Cash Services",
|
182 |
+
"170": "IHK",
|
183 |
+
"171": "IQOS",
|
184 |
+
"172": "ISS World",
|
185 |
+
"173": "In-N-Out Burger",
|
186 |
+
"174": "Insomnia Coffee",
|
187 |
+
"175": "InterContinental",
|
188 |
+
"176": "Interparking",
|
189 |
+
"177": "Iperal",
|
190 |
+
"178": "Italmark",
|
191 |
+
"179": "Jack & Jones",
|
192 |
+
"180": "Jacques' Wein-Depot",
|
193 |
+
"181": "Juan Valdez",
|
194 |
+
"182": "Jump Juice Bar",
|
195 |
+
"183": "JustAnswer",
|
196 |
+
"184": "K-Rauta",
|
197 |
+
"185": "KRAJ",
|
198 |
+
"186": "KTC",
|
199 |
+
"187": "Kastner & \u00d6hler",
|
200 |
+
"188": "Kinepolis",
|
201 |
+
"189": "Klarna",
|
202 |
+
"190": "Kramb\u00fa\u00f0",
|
203 |
+
"191": "Kritikos",
|
204 |
+
"192": "LNER",
|
205 |
+
"193": "La Sirena",
|
206 |
+
"194": "La Vie Claire",
|
207 |
+
"195": "Lacoste",
|
208 |
+
"196": "Lariviere",
|
209 |
+
"197": "Lastminute.com",
|
210 |
+
"198": "Le Crobag",
|
211 |
+
"199": "Le Five",
|
212 |
+
"200": "Lebara",
|
213 |
+
"201": "Lefties",
|
214 |
+
"202": "Legoland",
|
215 |
+
"203": "Leon Restaurants",
|
216 |
+
"204": "Les D\u00e9lices",
|
217 |
+
"205": "Levaduramadre",
|
218 |
+
"206": "Lindt",
|
219 |
+
"207": "Lloyds Farmacia",
|
220 |
+
"208": "Loblaws",
|
221 |
+
"209": "Localiza",
|
222 |
+
"210": "Lojas Renner",
|
223 |
+
"211": "Lotto",
|
224 |
+
"212": "Lovisa",
|
225 |
+
"213": "Lush Cosmetics",
|
226 |
+
"214": "MVG",
|
227 |
+
"215": "Macy's",
|
228 |
+
"216": "Maiora",
|
229 |
+
"217": "Manufactum",
|
230 |
+
"218": "Marco's Pizza",
|
231 |
+
"219": "Markant",
|
232 |
+
"220": "Markant Supermarkt",
|
233 |
+
"221": "Market Basket",
|
234 |
+
"222": "Massimo Dutti",
|
235 |
+
"223": "Medi-Market",
|
236 |
+
"224": "Meijer",
|
237 |
+
"225": "Meininger Hotels",
|
238 |
+
"226": "Mercado Extra",
|
239 |
+
"227": "Mercedes-Benz",
|
240 |
+
"228": "Merkur",
|
241 |
+
"229": "Meu Super",
|
242 |
+
"230": "Micromania",
|
243 |
+
"231": "Mladinska",
|
244 |
+
"232": "Mondadori Store",
|
245 |
+
"233": "Moto Motorway",
|
246 |
+
"234": "Mr. Bricolage",
|
247 |
+
"235": "M\u00f6belix",
|
248 |
+
"236": "NOZ",
|
249 |
+
"237": "Nah & Gut",
|
250 |
+
"238": "National Rail",
|
251 |
+
"239": "Nayax",
|
252 |
+
"240": "Netto Denmark",
|
253 |
+
"241": "Netto Marken-Discount",
|
254 |
+
"242": "Next",
|
255 |
+
"243": "Nordsee",
|
256 |
+
"244": "Norfa",
|
257 |
+
"245": "Notino",
|
258 |
+
"246": "O'Reilly Auto Parts",
|
259 |
+
"247": "O'Tacos",
|
260 |
+
"248": "OK Mobility",
|
261 |
+
"249": "OKay",
|
262 |
+
"250": "Ochsner Sport",
|
263 |
+
"251": "Old Wild West",
|
264 |
+
"252": "Ole & Steen",
|
265 |
+
"253": "Omio",
|
266 |
+
"254": "Omniva",
|
267 |
+
"255": "Oney",
|
268 |
+
"256": "OpenCor Vending",
|
269 |
+
"257": "P.F. Chang's",
|
270 |
+
"258": "POLOmarket",
|
271 |
+
"259": "PRIO",
|
272 |
+
"260": "Pad in Portugal",
|
273 |
+
"261": "Panet",
|
274 |
+
"262": "Panos",
|
275 |
+
"263": "Parken",
|
276 |
+
"264": "Patagonia",
|
277 |
+
"265": "Peter Pane",
|
278 |
+
"266": "Planet Fitness",
|
279 |
+
"267": "PlayStation",
|
280 |
+
"268": "Point Chaud",
|
281 |
+
"269": "Pokawa",
|
282 |
+
"270": "Poke House",
|
283 |
+
"271": "Polonez",
|
284 |
+
"272": "Post Luxembourg",
|
285 |
+
"273": "Potraviny",
|
286 |
+
"274": "Power.dk",
|
287 |
+
"275": "Proxim Supermercado",
|
288 |
+
"276": "Putka",
|
289 |
+
"277": "Qonto",
|
290 |
+
"278": "RTA",
|
291 |
+
"279": "Radatz",
|
292 |
+
"280": "Ralphs",
|
293 |
+
"281": "Real",
|
294 |
+
"282": "Riachuelo",
|
295 |
+
"283": "Ring",
|
296 |
+
"284": "Roblox",
|
297 |
+
"285": "Roku",
|
298 |
+
"286": "Rontec",
|
299 |
+
"287": "Rossopomodoro",
|
300 |
+
"288": "Ruch",
|
301 |
+
"289": "SFR",
|
302 |
+
"290": "Samsung",
|
303 |
+
"291": "SandwiChez",
|
304 |
+
"292": "Santagloria",
|
305 |
+
"293": "Saturn",
|
306 |
+
"294": "Second Cup",
|
307 |
+
"295": "Selfridges",
|
308 |
+
"296": "Servei Estaci\u00f3",
|
309 |
+
"297": "Sigma",
|
310 |
+
"298": "Silvan",
|
311 |
+
"299": "Six",
|
312 |
+
"300": "Slim Chickens",
|
313 |
+
"301": "Smart Parking",
|
314 |
+
"302": "Smarty Cashback",
|
315 |
+
"303": "Smullers",
|
316 |
+
"304": "Snappy Snaps",
|
317 |
+
"305": "Sokos Hotels",
|
318 |
+
"306": "Spearhead Taxis",
|
319 |
+
"307": "Spinneys",
|
320 |
+
"308": "Sp\u00e4tkauf",
|
321 |
+
"309": "Stadt Wien",
|
322 |
+
"310": "Stadt-Apotheke",
|
323 |
+
"311": "Star Tankstelle",
|
324 |
+
"312": "Steam",
|
325 |
+
"313": "Stroili Oro",
|
326 |
+
"314": "SumUp",
|
327 |
+
"315": "Suma Supermercados",
|
328 |
+
"316": "Super Muffato",
|
329 |
+
"317": "SuperFit",
|
330 |
+
"318": "Supermercado Bip Bip",
|
331 |
+
"319": "Swatch",
|
332 |
+
"320": "S\u00f8strene Grene",
|
333 |
+
"321": "TGI Friday's",
|
334 |
+
"322": "Tabac Presse",
|
335 |
+
"323": "Tallink",
|
336 |
+
"324": "Tam",
|
337 |
+
"325": "Tank & Rast",
|
338 |
+
"326": "Tank Ono",
|
339 |
+
"327": "Team Autohof",
|
340 |
+
"328": "TeeGschwendner",
|
341 |
+
"329": "Telef\u00f3nica",
|
342 |
+
"330": "Tenpin",
|
343 |
+
"331": "The ASH",
|
344 |
+
"332": "The Alchemist",
|
345 |
+
"333": "The Coffee Bean & Tea Leaf",
|
346 |
+
"334": "The Fresh Market",
|
347 |
+
"335": "The Good Burger",
|
348 |
+
"336": "The North Face",
|
349 |
+
"337": "The Range",
|
350 |
+
"338": "The niu",
|
351 |
+
"339": "Thomann",
|
352 |
+
"340": "Three",
|
353 |
+
"341": "Tibits",
|
354 |
+
"342": "TikTok",
|
355 |
+
"343": "Tom Tailor",
|
356 |
+
"344": "Toom",
|
357 |
+
"345": "Top Oil",
|
358 |
+
"346": "Totally Wicked",
|
359 |
+
"347": "Toyota",
|
360 |
+
"348": "Trader Joe's",
|
361 |
+
"349": "Transgourmet",
|
362 |
+
"350": "Transports Publics Genevois",
|
363 |
+
"351": "Transports Publics Lausannois",
|
364 |
+
"352": "Trenitalia",
|
365 |
+
"353": "Trgovina Krk",
|
366 |
+
"354": "Truffaut",
|
367 |
+
"355": "Turris",
|
368 |
+
"356": "Tu\u0161",
|
369 |
+
"357": "U Express",
|
370 |
+
"358": "U-Bahn",
|
371 |
+
"359": "UNICEF",
|
372 |
+
"360": "Unifree",
|
373 |
+
"361": "United Colors of Benetton",
|
374 |
+
"362": "Valvi",
|
375 |
+
"363": "Venchi",
|
376 |
+
"364": "VeniceBeach Fitness",
|
377 |
+
"365": "Vio.com",
|
378 |
+
"366": "Vival",
|
379 |
+
"367": "Vivari Coffee & Bakery",
|
380 |
+
"368": "Vivid Seats",
|
381 |
+
"369": "Voi Scooters",
|
382 |
+
"370": "V\u00ednb\u00fa\u00f0in",
|
383 |
+
"371": "Wallapop",
|
384 |
+
"372": "Walther Tankstelle",
|
385 |
+
"373": "Wasabi",
|
386 |
+
"374": "WeWork",
|
387 |
+
"375": "Weekday",
|
388 |
+
"376": "Wolt",
|
389 |
+
"377": "Women'secret",
|
390 |
+
"378": "Woolworth",
|
391 |
+
"379": "XXL Sports & Outdoor",
|
392 |
+
"380": "Yves Rocher",
|
393 |
+
"381": "Zaxby's",
|
394 |
+
"382": "Zoho",
|
395 |
+
"383": "Zolpan",
|
396 |
+
"384": "Zorbas Bakery",
|
397 |
+
"385": "Zurich Insurance",
|
398 |
+
"386": "beObank",
|
399 |
+
"387": "eSmoking World",
|
400 |
+
"388": "\u00d6oB",
|
401 |
+
"389": "\u0395\u03bb\u03af\u03bd"
|
402 |
+
},
|
403 |
+
"initializer_range": 0.02,
|
404 |
+
"label2id": {
|
405 |
+
"2theloo": 1,
|
406 |
+
"365 Retail Markets": 2,
|
407 |
+
"A4 Brescia Padova": 3,
|
408 |
+
"AMZS": 4,
|
409 |
+
"ASFINAG": 5,
|
410 |
+
"ASICS": 6,
|
411 |
+
"ATAC": 7,
|
412 |
+
"AWS": 8,
|
413 |
+
"Abacus Cooperativa": 9,
|
414 |
+
"Adyen": 10,
|
415 |
+
"Aelia Duty Free": 11,
|
416 |
+
"Aida": 12,
|
417 |
+
"Alcott": 13,
|
418 |
+
"Alipay": 14,
|
419 |
+
"American Eagle Outfitter": 15,
|
420 |
+
"American Express": 16,
|
421 |
+
"Amorino": 17,
|
422 |
+
"Appart'City": 18,
|
423 |
+
"Arabica Coffee": 19,
|
424 |
+
"Areas": 20,
|
425 |
+
"Arenal": 21,
|
426 |
+
"Atlantsol\u00eda": 22,
|
427 |
+
"Atm.it": 23,
|
428 |
+
"AutoZone": 24,
|
429 |
+
"Avianca Airlines": 25,
|
430 |
+
"Avoca": 26,
|
431 |
+
"B+B Parkhaus": 27,
|
432 |
+
"BCC Roma": 28,
|
433 |
+
"BNP Paribas": 29,
|
434 |
+
"BVG": 30,
|
435 |
+
"Basic-Fit": 31,
|
436 |
+
"BayWa": 32,
|
437 |
+
"Bellaflora": 33,
|
438 |
+
"Best-One": 34,
|
439 |
+
"Bi1": 35,
|
440 |
+
"Bico de Xeado": 36,
|
441 |
+
"BigMat": 37,
|
442 |
+
"Bingo City Center": 38,
|
443 |
+
"Bird": 39,
|
444 |
+
"Block House": 40,
|
445 |
+
"Blokker": 41,
|
446 |
+
"Boursorama": 42,
|
447 |
+
"Brandy Melville": 43,
|
448 |
+
"Bricorama": 44,
|
449 |
+
"Buc-ee's": 45,
|
450 |
+
"BudgetAir": 46,
|
451 |
+
"Bund.de": 47,
|
452 |
+
"Bureau Vall\u00e9e": 48,
|
453 |
+
"Butlers": 49,
|
454 |
+
"Bwin": 50,
|
455 |
+
"B\u00e4ckerei Hoefer": 51,
|
456 |
+
"B\u00e4ckerei Terbuyken": 52,
|
457 |
+
"B\u00e4ckerei Werning": 53,
|
458 |
+
"B\u00e4ckermeister Haferkamp": 54,
|
459 |
+
"CAP-Markt": 55,
|
460 |
+
"CBA": 56,
|
461 |
+
"CVMaker.uk": 57,
|
462 |
+
"Cafe & Bar Celona": 58,
|
463 |
+
"Cafe del Sol": 59,
|
464 |
+
"Caja Rural": 60,
|
465 |
+
"Cake Box": 61,
|
466 |
+
"Calpam": 62,
|
467 |
+
"Calvin Klein": 63,
|
468 |
+
"Canteen": 64,
|
469 |
+
"Careem": 65,
|
470 |
+
"Caribou Coffee": 66,
|
471 |
+
"Carter's": 67,
|
472 |
+
"Casa del Libro": 68,
|
473 |
+
"Cats Protection": 69,
|
474 |
+
"Centauro Rent a Car": 70,
|
475 |
+
"Centrakor": 71,
|
476 |
+
"Checkers": 72,
|
477 |
+
"Cinemark": 73,
|
478 |
+
"Cineplex": 74,
|
479 |
+
"Cinesa": 75,
|
480 |
+
"Cineworld": 76,
|
481 |
+
"CitizenM": 77,
|
482 |
+
"City Gross": 78,
|
483 |
+
"City Market": 79,
|
484 |
+
"City of Quebec": 80,
|
485 |
+
"Coin.it": 81,
|
486 |
+
"Columbus Cafe": 82,
|
487 |
+
"Copa Airlines": 83,
|
488 |
+
"Credit Engine": 84,
|
489 |
+
"Crunchyroll": 85,
|
490 |
+
"Curzon": 86,
|
491 |
+
"DGFIP": 87,
|
492 |
+
"DPD": 88,
|
493 |
+
"DPMCB": 89,
|
494 |
+
"Daiso": 90,
|
495 |
+
"Day Today": 91,
|
496 |
+
"Dec\u00f2": 92,
|
497 |
+
"DeepL": 93,
|
498 |
+
"Deiters": 94,
|
499 |
+
"Der B\u00e4cker Ruetz": 95,
|
500 |
+
"Der Rundfunkbeitrag": 96,
|
501 |
+
"Deutsche Bank": 97,
|
502 |
+
"Deutsche Post": 98,
|
503 |
+
"Deutsche Rentenversicherung": 99,
|
504 |
+
"Digital River": 100,
|
505 |
+
"Disney+": 101,
|
506 |
+
"Dnata": 102,
|
507 |
+
"Dom Lek\u00f3w": 103,
|
508 |
+
"Dr Martens": 104,
|
509 |
+
"Dussmann": 105,
|
510 |
+
"Dyson": 106,
|
511 |
+
"E.ON": 107,
|
512 |
+
"EE": 108,
|
513 |
+
"EasyPark": 109,
|
514 |
+
"Ebl-Naturkost": 110,
|
515 |
+
"Eharmony": 111,
|
516 |
+
"Elior": 112,
|
517 |
+
"Emirates Leisure Retail": 113,
|
518 |
+
"Emmerys": 114,
|
519 |
+
"Enchilada": 115,
|
520 |
+
"Engie": 116,
|
521 |
+
"Enrique Tomas": 117,
|
522 |
+
"Ergo": 118,
|
523 |
+
"EsclatOil": 119,
|
524 |
+
"EuroPark": 120,
|
525 |
+
"Everest": 121,
|
526 |
+
"FEBO": 122,
|
527 |
+
"FairPrice": 123,
|
528 |
+
"Fina": 124,
|
529 |
+
"Fitinn": 125,
|
530 |
+
"FlixBus": 126,
|
531 |
+
"Footasylum": 127,
|
532 |
+
"Four Seasons": 128,
|
533 |
+
"Free People": 129,
|
534 |
+
"Freie Tankstelle": 130,
|
535 |
+
"G La Dalle": 131,
|
536 |
+
"GNC": 132,
|
537 |
+
"Galaxias": 133,
|
538 |
+
"Galaxus": 134,
|
539 |
+
"Gall & Gall": 135,
|
540 |
+
"Gedimat": 136,
|
541 |
+
"Geldmaat": 137,
|
542 |
+
"Generali": 138,
|
543 |
+
"Getgo": 139,
|
544 |
+
"Getr\u00e4nke Hoffmann": 140,
|
545 |
+
"GoDaddy": 141,
|
546 |
+
"Goldcar": 142,
|
547 |
+
"Google Fi": 143,
|
548 |
+
"Greffe du Tribunal": 144,
|
549 |
+
"Gucci": 145,
|
550 |
+
"Guess": 146,
|
551 |
+
"HD Hotels": 147,
|
552 |
+
"HSBC": 148,
|
553 |
+
"Hamburg Airport": 149,
|
554 |
+
"Hannaford": 150,
|
555 |
+
"Hans im Gl\u00fcck": 151,
|
556 |
+
"Harald Nyborg": 152,
|
557 |
+
"Hebe": 153,
|
558 |
+
"Heinemann": 154,
|
559 |
+
"HelloFresh": 155,
|
560 |
+
"Hermes": 156,
|
561 |
+
"Hilton Garden Inn": 157,
|
562 |
+
"Hilton Garden Inn Hotel": 158,
|
563 |
+
"Hiper Centro": 159,
|
564 |
+
"Holland & Barrett": 160,
|
565 |
+
"Hollister Co.": 161,
|
566 |
+
"Hollywood Bowl": 162,
|
567 |
+
"Hotel Barcel\u00f3": 163,
|
568 |
+
"Hotel Mama Shelter": 164,
|
569 |
+
"Hotel Silken": 165,
|
570 |
+
"Hudson": 166,
|
571 |
+
"Hugo Boss": 167,
|
572 |
+
"HungryPanda": 168,
|
573 |
+
"IC Cash Services": 169,
|
574 |
+
"IHK": 170,
|
575 |
+
"IQOS": 171,
|
576 |
+
"ISS World": 172,
|
577 |
+
"In-N-Out Burger": 173,
|
578 |
+
"Insomnia Coffee": 174,
|
579 |
+
"InterContinental": 175,
|
580 |
+
"Interparking": 176,
|
581 |
+
"Iperal": 177,
|
582 |
+
"Italmark": 178,
|
583 |
+
"Jack & Jones": 179,
|
584 |
+
"Jacques' Wein-Depot": 180,
|
585 |
+
"Juan Valdez": 181,
|
586 |
+
"Jump Juice Bar": 182,
|
587 |
+
"JustAnswer": 183,
|
588 |
+
"K-Rauta": 184,
|
589 |
+
"KRAJ": 185,
|
590 |
+
"KTC": 186,
|
591 |
+
"Kastner & \u00d6hler": 187,
|
592 |
+
"Kinepolis": 188,
|
593 |
+
"Klarna": 189,
|
594 |
+
"Kramb\u00fa\u00f0": 190,
|
595 |
+
"Kritikos": 191,
|
596 |
+
"LNER": 192,
|
597 |
+
"La Sirena": 193,
|
598 |
+
"La Vie Claire": 194,
|
599 |
+
"Lacoste": 195,
|
600 |
+
"Lariviere": 196,
|
601 |
+
"Lastminute.com": 197,
|
602 |
+
"Le Crobag": 198,
|
603 |
+
"Le Five": 199,
|
604 |
+
"Lebara": 200,
|
605 |
+
"Lefties": 201,
|
606 |
+
"Legoland": 202,
|
607 |
+
"Leon Restaurants": 203,
|
608 |
+
"Les D\u00e9lices": 204,
|
609 |
+
"Levaduramadre": 205,
|
610 |
+
"Lindt": 206,
|
611 |
+
"Lloyds Farmacia": 207,
|
612 |
+
"Loblaws": 208,
|
613 |
+
"Localiza": 209,
|
614 |
+
"Lojas Renner": 210,
|
615 |
+
"Lotto": 211,
|
616 |
+
"Lovisa": 212,
|
617 |
+
"Lush Cosmetics": 213,
|
618 |
+
"MVG": 214,
|
619 |
+
"Macy's": 215,
|
620 |
+
"Maiora": 216,
|
621 |
+
"Manufactum": 217,
|
622 |
+
"Marco's Pizza": 218,
|
623 |
+
"Markant": 219,
|
624 |
+
"Markant Supermarkt": 220,
|
625 |
+
"Market Basket": 221,
|
626 |
+
"Massimo Dutti": 222,
|
627 |
+
"Medi-Market": 223,
|
628 |
+
"Meijer": 224,
|
629 |
+
"Meininger Hotels": 225,
|
630 |
+
"Mercado Extra": 226,
|
631 |
+
"Mercedes-Benz": 227,
|
632 |
+
"Merkur": 228,
|
633 |
+
"Meu Super": 229,
|
634 |
+
"Micromania": 230,
|
635 |
+
"Mladinska": 231,
|
636 |
+
"Mondadori Store": 232,
|
637 |
+
"Moto Motorway": 233,
|
638 |
+
"Mr. Bricolage": 234,
|
639 |
+
"M\u00f6belix": 235,
|
640 |
+
"NOZ": 236,
|
641 |
+
"Nah & Gut": 237,
|
642 |
+
"National Rail": 238,
|
643 |
+
"Nayax": 239,
|
644 |
+
"Netto Denmark": 240,
|
645 |
+
"Netto Marken-Discount": 241,
|
646 |
+
"Next": 242,
|
647 |
+
"Nordsee": 243,
|
648 |
+
"Norfa": 244,
|
649 |
+
"Notino": 245,
|
650 |
+
"O'Reilly Auto Parts": 246,
|
651 |
+
"O'Tacos": 247,
|
652 |
+
"OK Mobility": 248,
|
653 |
+
"OKay": 249,
|
654 |
+
"Ochsner Sport": 250,
|
655 |
+
"Old Wild West": 251,
|
656 |
+
"Ole & Steen": 252,
|
657 |
+
"Omio": 253,
|
658 |
+
"Omniva": 254,
|
659 |
+
"Oney": 255,
|
660 |
+
"OpenCor Vending": 256,
|
661 |
+
"P.F. Chang's": 257,
|
662 |
+
"POLOmarket": 258,
|
663 |
+
"PRIO": 259,
|
664 |
+
"Pad in Portugal": 260,
|
665 |
+
"Panet": 261,
|
666 |
+
"Panos": 262,
|
667 |
+
"Parken": 263,
|
668 |
+
"Patagonia": 264,
|
669 |
+
"Peter Pane": 265,
|
670 |
+
"Planet Fitness": 266,
|
671 |
+
"PlayStation": 267,
|
672 |
+
"Point Chaud": 268,
|
673 |
+
"Pokawa": 269,
|
674 |
+
"Poke House": 270,
|
675 |
+
"Polonez": 271,
|
676 |
+
"Post Luxembourg": 272,
|
677 |
+
"Potraviny": 273,
|
678 |
+
"Power.dk": 274,
|
679 |
+
"Proxim Supermercado": 275,
|
680 |
+
"Putka": 276,
|
681 |
+
"Qonto": 277,
|
682 |
+
"RTA": 278,
|
683 |
+
"Radatz": 279,
|
684 |
+
"Ralphs": 280,
|
685 |
+
"Real": 281,
|
686 |
+
"Riachuelo": 282,
|
687 |
+
"Ring": 283,
|
688 |
+
"Roblox": 284,
|
689 |
+
"Roku": 285,
|
690 |
+
"Rontec": 286,
|
691 |
+
"Rossopomodoro": 287,
|
692 |
+
"Ruch": 288,
|
693 |
+
"SFR": 289,
|
694 |
+
"Samsung": 290,
|
695 |
+
"SandwiChez": 291,
|
696 |
+
"Santagloria": 292,
|
697 |
+
"Saturn": 293,
|
698 |
+
"Second Cup": 294,
|
699 |
+
"Selfridges": 295,
|
700 |
+
"Servei Estaci\u00f3": 296,
|
701 |
+
"Sigma": 297,
|
702 |
+
"Silvan": 298,
|
703 |
+
"Six": 299,
|
704 |
+
"Slim Chickens": 300,
|
705 |
+
"Smart Parking": 301,
|
706 |
+
"Smarty Cashback": 302,
|
707 |
+
"Smullers": 303,
|
708 |
+
"Snappy Snaps": 304,
|
709 |
+
"Sokos Hotels": 305,
|
710 |
+
"Spearhead Taxis": 306,
|
711 |
+
"Spinneys": 307,
|
712 |
+
"Sp\u00e4tkauf": 308,
|
713 |
+
"Stadt Wien": 309,
|
714 |
+
"Stadt-Apotheke": 310,
|
715 |
+
"Star Tankstelle": 311,
|
716 |
+
"Steam": 312,
|
717 |
+
"Stroili Oro": 313,
|
718 |
+
"SumUp": 314,
|
719 |
+
"Suma Supermercados": 315,
|
720 |
+
"Super Muffato": 316,
|
721 |
+
"SuperFit": 317,
|
722 |
+
"Supermercado Bip Bip": 318,
|
723 |
+
"Swatch": 319,
|
724 |
+
"S\u00f8strene Grene": 320,
|
725 |
+
"TGI Friday's": 321,
|
726 |
+
"Tabac Presse": 322,
|
727 |
+
"Tallink": 323,
|
728 |
+
"Tam": 324,
|
729 |
+
"Tank & Rast": 325,
|
730 |
+
"Tank Ono": 326,
|
731 |
+
"Team Autohof": 327,
|
732 |
+
"TeeGschwendner": 328,
|
733 |
+
"Telef\u00f3nica": 329,
|
734 |
+
"Tenpin": 330,
|
735 |
+
"The ASH": 331,
|
736 |
+
"The Alchemist": 332,
|
737 |
+
"The Coffee Bean & Tea Leaf": 333,
|
738 |
+
"The Fresh Market": 334,
|
739 |
+
"The Good Burger": 335,
|
740 |
+
"The North Face": 336,
|
741 |
+
"The Range": 337,
|
742 |
+
"The niu": 338,
|
743 |
+
"Thomann": 339,
|
744 |
+
"Three": 340,
|
745 |
+
"Tibits": 341,
|
746 |
+
"TikTok": 342,
|
747 |
+
"Tom Tailor": 343,
|
748 |
+
"Toom": 344,
|
749 |
+
"Top Oil": 345,
|
750 |
+
"Totally Wicked": 346,
|
751 |
+
"Toyota": 347,
|
752 |
+
"Trader Joe's": 348,
|
753 |
+
"Transgourmet": 349,
|
754 |
+
"Transports Publics Genevois": 350,
|
755 |
+
"Transports Publics Lausannois": 351,
|
756 |
+
"Trenitalia": 352,
|
757 |
+
"Trgovina Krk": 353,
|
758 |
+
"Truffaut": 354,
|
759 |
+
"Turris": 355,
|
760 |
+
"Tu\u0161": 356,
|
761 |
+
"U Express": 357,
|
762 |
+
"U-Bahn": 358,
|
763 |
+
"UNICEF": 359,
|
764 |
+
"Unifree": 360,
|
765 |
+
"United Colors of Benetton": 361,
|
766 |
+
"Valvi": 362,
|
767 |
+
"Venchi": 363,
|
768 |
+
"VeniceBeach Fitness": 364,
|
769 |
+
"Vio.com": 365,
|
770 |
+
"Vival": 366,
|
771 |
+
"Vivari Coffee & Bakery": 367,
|
772 |
+
"Vivid Seats": 368,
|
773 |
+
"Voi Scooters": 369,
|
774 |
+
"V\u00ednb\u00fa\u00f0in": 370,
|
775 |
+
"Wallapop": 371,
|
776 |
+
"Walther Tankstelle": 372,
|
777 |
+
"Wasabi": 373,
|
778 |
+
"WeWork": 374,
|
779 |
+
"Weekday": 375,
|
780 |
+
"Wolt": 376,
|
781 |
+
"Women'secret": 377,
|
782 |
+
"Woolworth": 378,
|
783 |
+
"XXL Sports & Outdoor": 379,
|
784 |
+
"Yves Rocher": 380,
|
785 |
+
"Zaxby's": 381,
|
786 |
+
"Zoho": 382,
|
787 |
+
"Zolpan": 383,
|
788 |
+
"Zorbas Bakery": 384,
|
789 |
+
"Zurich Insurance": 385,
|
790 |
+
"beObank": 386,
|
791 |
+
"eSmoking World": 387,
|
792 |
+
"unknown": 0,
|
793 |
+
"\u00d6oB": 388,
|
794 |
+
"\u0395\u03bb\u03af\u03bd": 389
|
795 |
+
},
|
796 |
+
"max_position_embeddings": 512,
|
797 |
+
"model_type": "distilbert",
|
798 |
+
"n_heads": 12,
|
799 |
+
"n_layers": 6,
|
800 |
+
"pad_token_id": 0,
|
801 |
+
"problem_type": "single_label_classification",
|
802 |
+
"qa_dropout": 0.1,
|
803 |
+
"seq_classif_dropout": 0.2,
|
804 |
+
"sinusoidal_pos_embds": false,
|
805 |
+
"tie_weights_": true,
|
806 |
+
"torch_dtype": "float32",
|
807 |
+
"transformers_version": "4.39.3",
|
808 |
+
"vocab_size": 30522
|
809 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2f0acf81694b24d3efc39a23aa14b1ef6450b6a75e24c032239539078d5cf1e
|
3 |
+
size 269026072
|