josejointriple commited on
Commit
14d9dcc
1 Parent(s): af379fe

Upload DistilBertForSequenceClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +809 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,809 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "unknown",
13
+ "1": "2theloo",
14
+ "2": "365 Retail Markets",
15
+ "3": "A4 Brescia Padova",
16
+ "4": "AMZS",
17
+ "5": "ASFINAG",
18
+ "6": "ASICS",
19
+ "7": "ATAC",
20
+ "8": "AWS",
21
+ "9": "Abacus Cooperativa",
22
+ "10": "Adyen",
23
+ "11": "Aelia Duty Free",
24
+ "12": "Aida",
25
+ "13": "Alcott",
26
+ "14": "Alipay",
27
+ "15": "American Eagle Outfitter",
28
+ "16": "American Express",
29
+ "17": "Amorino",
30
+ "18": "Appart'City",
31
+ "19": "Arabica Coffee",
32
+ "20": "Areas",
33
+ "21": "Arenal",
34
+ "22": "Atlantsol\u00eda",
35
+ "23": "Atm.it",
36
+ "24": "AutoZone",
37
+ "25": "Avianca Airlines",
38
+ "26": "Avoca",
39
+ "27": "B+B Parkhaus",
40
+ "28": "BCC Roma",
41
+ "29": "BNP Paribas",
42
+ "30": "BVG",
43
+ "31": "Basic-Fit",
44
+ "32": "BayWa",
45
+ "33": "Bellaflora",
46
+ "34": "Best-One",
47
+ "35": "Bi1",
48
+ "36": "Bico de Xeado",
49
+ "37": "BigMat",
50
+ "38": "Bingo City Center",
51
+ "39": "Bird",
52
+ "40": "Block House",
53
+ "41": "Blokker",
54
+ "42": "Boursorama",
55
+ "43": "Brandy Melville",
56
+ "44": "Bricorama",
57
+ "45": "Buc-ee's",
58
+ "46": "BudgetAir",
59
+ "47": "Bund.de",
60
+ "48": "Bureau Vall\u00e9e",
61
+ "49": "Butlers",
62
+ "50": "Bwin",
63
+ "51": "B\u00e4ckerei Hoefer",
64
+ "52": "B\u00e4ckerei Terbuyken",
65
+ "53": "B\u00e4ckerei Werning",
66
+ "54": "B\u00e4ckermeister Haferkamp",
67
+ "55": "CAP-Markt",
68
+ "56": "CBA",
69
+ "57": "CVMaker.uk",
70
+ "58": "Cafe & Bar Celona",
71
+ "59": "Cafe del Sol",
72
+ "60": "Caja Rural",
73
+ "61": "Cake Box",
74
+ "62": "Calpam",
75
+ "63": "Calvin Klein",
76
+ "64": "Canteen",
77
+ "65": "Careem",
78
+ "66": "Caribou Coffee",
79
+ "67": "Carter's",
80
+ "68": "Casa del Libro",
81
+ "69": "Cats Protection",
82
+ "70": "Centauro Rent a Car",
83
+ "71": "Centrakor",
84
+ "72": "Checkers",
85
+ "73": "Cinemark",
86
+ "74": "Cineplex",
87
+ "75": "Cinesa",
88
+ "76": "Cineworld",
89
+ "77": "CitizenM",
90
+ "78": "City Gross",
91
+ "79": "City Market",
92
+ "80": "City of Quebec",
93
+ "81": "Coin.it",
94
+ "82": "Columbus Cafe",
95
+ "83": "Copa Airlines",
96
+ "84": "Credit Engine",
97
+ "85": "Crunchyroll",
98
+ "86": "Curzon",
99
+ "87": "DGFIP",
100
+ "88": "DPD",
101
+ "89": "DPMCB",
102
+ "90": "Daiso",
103
+ "91": "Day Today",
104
+ "92": "Dec\u00f2",
105
+ "93": "DeepL",
106
+ "94": "Deiters",
107
+ "95": "Der B\u00e4cker Ruetz",
108
+ "96": "Der Rundfunkbeitrag",
109
+ "97": "Deutsche Bank",
110
+ "98": "Deutsche Post",
111
+ "99": "Deutsche Rentenversicherung",
112
+ "100": "Digital River",
113
+ "101": "Disney+",
114
+ "102": "Dnata",
115
+ "103": "Dom Lek\u00f3w",
116
+ "104": "Dr Martens",
117
+ "105": "Dussmann",
118
+ "106": "Dyson",
119
+ "107": "E.ON",
120
+ "108": "EE",
121
+ "109": "EasyPark",
122
+ "110": "Ebl-Naturkost",
123
+ "111": "Eharmony",
124
+ "112": "Elior",
125
+ "113": "Emirates Leisure Retail",
126
+ "114": "Emmerys",
127
+ "115": "Enchilada",
128
+ "116": "Engie",
129
+ "117": "Enrique Tomas",
130
+ "118": "Ergo",
131
+ "119": "EsclatOil",
132
+ "120": "EuroPark",
133
+ "121": "Everest",
134
+ "122": "FEBO",
135
+ "123": "FairPrice",
136
+ "124": "Fina",
137
+ "125": "Fitinn",
138
+ "126": "FlixBus",
139
+ "127": "Footasylum",
140
+ "128": "Four Seasons",
141
+ "129": "Free People",
142
+ "130": "Freie Tankstelle",
143
+ "131": "G La Dalle",
144
+ "132": "GNC",
145
+ "133": "Galaxias",
146
+ "134": "Galaxus",
147
+ "135": "Gall & Gall",
148
+ "136": "Gedimat",
149
+ "137": "Geldmaat",
150
+ "138": "Generali",
151
+ "139": "Getgo",
152
+ "140": "Getr\u00e4nke Hoffmann",
153
+ "141": "GoDaddy",
154
+ "142": "Goldcar",
155
+ "143": "Google Fi",
156
+ "144": "Greffe du Tribunal",
157
+ "145": "Gucci",
158
+ "146": "Guess",
159
+ "147": "HD Hotels",
160
+ "148": "HSBC",
161
+ "149": "Hamburg Airport",
162
+ "150": "Hannaford",
163
+ "151": "Hans im Gl\u00fcck",
164
+ "152": "Harald Nyborg",
165
+ "153": "Hebe",
166
+ "154": "Heinemann",
167
+ "155": "HelloFresh",
168
+ "156": "Hermes",
169
+ "157": "Hilton Garden Inn",
170
+ "158": "Hilton Garden Inn Hotel",
171
+ "159": "Hiper Centro",
172
+ "160": "Holland & Barrett",
173
+ "161": "Hollister Co.",
174
+ "162": "Hollywood Bowl",
175
+ "163": "Hotel Barcel\u00f3",
176
+ "164": "Hotel Mama Shelter",
177
+ "165": "Hotel Silken",
178
+ "166": "Hudson",
179
+ "167": "Hugo Boss",
180
+ "168": "HungryPanda",
181
+ "169": "IC Cash Services",
182
+ "170": "IHK",
183
+ "171": "IQOS",
184
+ "172": "ISS World",
185
+ "173": "In-N-Out Burger",
186
+ "174": "Insomnia Coffee",
187
+ "175": "InterContinental",
188
+ "176": "Interparking",
189
+ "177": "Iperal",
190
+ "178": "Italmark",
191
+ "179": "Jack & Jones",
192
+ "180": "Jacques' Wein-Depot",
193
+ "181": "Juan Valdez",
194
+ "182": "Jump Juice Bar",
195
+ "183": "JustAnswer",
196
+ "184": "K-Rauta",
197
+ "185": "KRAJ",
198
+ "186": "KTC",
199
+ "187": "Kastner & \u00d6hler",
200
+ "188": "Kinepolis",
201
+ "189": "Klarna",
202
+ "190": "Kramb\u00fa\u00f0",
203
+ "191": "Kritikos",
204
+ "192": "LNER",
205
+ "193": "La Sirena",
206
+ "194": "La Vie Claire",
207
+ "195": "Lacoste",
208
+ "196": "Lariviere",
209
+ "197": "Lastminute.com",
210
+ "198": "Le Crobag",
211
+ "199": "Le Five",
212
+ "200": "Lebara",
213
+ "201": "Lefties",
214
+ "202": "Legoland",
215
+ "203": "Leon Restaurants",
216
+ "204": "Les D\u00e9lices",
217
+ "205": "Levaduramadre",
218
+ "206": "Lindt",
219
+ "207": "Lloyds Farmacia",
220
+ "208": "Loblaws",
221
+ "209": "Localiza",
222
+ "210": "Lojas Renner",
223
+ "211": "Lotto",
224
+ "212": "Lovisa",
225
+ "213": "Lush Cosmetics",
226
+ "214": "MVG",
227
+ "215": "Macy's",
228
+ "216": "Maiora",
229
+ "217": "Manufactum",
230
+ "218": "Marco's Pizza",
231
+ "219": "Markant",
232
+ "220": "Markant Supermarkt",
233
+ "221": "Market Basket",
234
+ "222": "Massimo Dutti",
235
+ "223": "Medi-Market",
236
+ "224": "Meijer",
237
+ "225": "Meininger Hotels",
238
+ "226": "Mercado Extra",
239
+ "227": "Mercedes-Benz",
240
+ "228": "Merkur",
241
+ "229": "Meu Super",
242
+ "230": "Micromania",
243
+ "231": "Mladinska",
244
+ "232": "Mondadori Store",
245
+ "233": "Moto Motorway",
246
+ "234": "Mr. Bricolage",
247
+ "235": "M\u00f6belix",
248
+ "236": "NOZ",
249
+ "237": "Nah & Gut",
250
+ "238": "National Rail",
251
+ "239": "Nayax",
252
+ "240": "Netto Denmark",
253
+ "241": "Netto Marken-Discount",
254
+ "242": "Next",
255
+ "243": "Nordsee",
256
+ "244": "Norfa",
257
+ "245": "Notino",
258
+ "246": "O'Reilly Auto Parts",
259
+ "247": "O'Tacos",
260
+ "248": "OK Mobility",
261
+ "249": "OKay",
262
+ "250": "Ochsner Sport",
263
+ "251": "Old Wild West",
264
+ "252": "Ole & Steen",
265
+ "253": "Omio",
266
+ "254": "Omniva",
267
+ "255": "Oney",
268
+ "256": "OpenCor Vending",
269
+ "257": "P.F. Chang's",
270
+ "258": "POLOmarket",
271
+ "259": "PRIO",
272
+ "260": "Pad in Portugal",
273
+ "261": "Panet",
274
+ "262": "Panos",
275
+ "263": "Parken",
276
+ "264": "Patagonia",
277
+ "265": "Peter Pane",
278
+ "266": "Planet Fitness",
279
+ "267": "PlayStation",
280
+ "268": "Point Chaud",
281
+ "269": "Pokawa",
282
+ "270": "Poke House",
283
+ "271": "Polonez",
284
+ "272": "Post Luxembourg",
285
+ "273": "Potraviny",
286
+ "274": "Power.dk",
287
+ "275": "Proxim Supermercado",
288
+ "276": "Putka",
289
+ "277": "Qonto",
290
+ "278": "RTA",
291
+ "279": "Radatz",
292
+ "280": "Ralphs",
293
+ "281": "Real",
294
+ "282": "Riachuelo",
295
+ "283": "Ring",
296
+ "284": "Roblox",
297
+ "285": "Roku",
298
+ "286": "Rontec",
299
+ "287": "Rossopomodoro",
300
+ "288": "Ruch",
301
+ "289": "SFR",
302
+ "290": "Samsung",
303
+ "291": "SandwiChez",
304
+ "292": "Santagloria",
305
+ "293": "Saturn",
306
+ "294": "Second Cup",
307
+ "295": "Selfridges",
308
+ "296": "Servei Estaci\u00f3",
309
+ "297": "Sigma",
310
+ "298": "Silvan",
311
+ "299": "Six",
312
+ "300": "Slim Chickens",
313
+ "301": "Smart Parking",
314
+ "302": "Smarty Cashback",
315
+ "303": "Smullers",
316
+ "304": "Snappy Snaps",
317
+ "305": "Sokos Hotels",
318
+ "306": "Spearhead Taxis",
319
+ "307": "Spinneys",
320
+ "308": "Sp\u00e4tkauf",
321
+ "309": "Stadt Wien",
322
+ "310": "Stadt-Apotheke",
323
+ "311": "Star Tankstelle",
324
+ "312": "Steam",
325
+ "313": "Stroili Oro",
326
+ "314": "SumUp",
327
+ "315": "Suma Supermercados",
328
+ "316": "Super Muffato",
329
+ "317": "SuperFit",
330
+ "318": "Supermercado Bip Bip",
331
+ "319": "Swatch",
332
+ "320": "S\u00f8strene Grene",
333
+ "321": "TGI Friday's",
334
+ "322": "Tabac Presse",
335
+ "323": "Tallink",
336
+ "324": "Tam",
337
+ "325": "Tank & Rast",
338
+ "326": "Tank Ono",
339
+ "327": "Team Autohof",
340
+ "328": "TeeGschwendner",
341
+ "329": "Telef\u00f3nica",
342
+ "330": "Tenpin",
343
+ "331": "The ASH",
344
+ "332": "The Alchemist",
345
+ "333": "The Coffee Bean & Tea Leaf",
346
+ "334": "The Fresh Market",
347
+ "335": "The Good Burger",
348
+ "336": "The North Face",
349
+ "337": "The Range",
350
+ "338": "The niu",
351
+ "339": "Thomann",
352
+ "340": "Three",
353
+ "341": "Tibits",
354
+ "342": "TikTok",
355
+ "343": "Tom Tailor",
356
+ "344": "Toom",
357
+ "345": "Top Oil",
358
+ "346": "Totally Wicked",
359
+ "347": "Toyota",
360
+ "348": "Trader Joe's",
361
+ "349": "Transgourmet",
362
+ "350": "Transports Publics Genevois",
363
+ "351": "Transports Publics Lausannois",
364
+ "352": "Trenitalia",
365
+ "353": "Trgovina Krk",
366
+ "354": "Truffaut",
367
+ "355": "Turris",
368
+ "356": "Tu\u0161",
369
+ "357": "U Express",
370
+ "358": "U-Bahn",
371
+ "359": "UNICEF",
372
+ "360": "Unifree",
373
+ "361": "United Colors of Benetton",
374
+ "362": "Valvi",
375
+ "363": "Venchi",
376
+ "364": "VeniceBeach Fitness",
377
+ "365": "Vio.com",
378
+ "366": "Vival",
379
+ "367": "Vivari Coffee & Bakery",
380
+ "368": "Vivid Seats",
381
+ "369": "Voi Scooters",
382
+ "370": "V\u00ednb\u00fa\u00f0in",
383
+ "371": "Wallapop",
384
+ "372": "Walther Tankstelle",
385
+ "373": "Wasabi",
386
+ "374": "WeWork",
387
+ "375": "Weekday",
388
+ "376": "Wolt",
389
+ "377": "Women'secret",
390
+ "378": "Woolworth",
391
+ "379": "XXL Sports & Outdoor",
392
+ "380": "Yves Rocher",
393
+ "381": "Zaxby's",
394
+ "382": "Zoho",
395
+ "383": "Zolpan",
396
+ "384": "Zorbas Bakery",
397
+ "385": "Zurich Insurance",
398
+ "386": "beObank",
399
+ "387": "eSmoking World",
400
+ "388": "\u00d6oB",
401
+ "389": "\u0395\u03bb\u03af\u03bd"
402
+ },
403
+ "initializer_range": 0.02,
404
+ "label2id": {
405
+ "2theloo": 1,
406
+ "365 Retail Markets": 2,
407
+ "A4 Brescia Padova": 3,
408
+ "AMZS": 4,
409
+ "ASFINAG": 5,
410
+ "ASICS": 6,
411
+ "ATAC": 7,
412
+ "AWS": 8,
413
+ "Abacus Cooperativa": 9,
414
+ "Adyen": 10,
415
+ "Aelia Duty Free": 11,
416
+ "Aida": 12,
417
+ "Alcott": 13,
418
+ "Alipay": 14,
419
+ "American Eagle Outfitter": 15,
420
+ "American Express": 16,
421
+ "Amorino": 17,
422
+ "Appart'City": 18,
423
+ "Arabica Coffee": 19,
424
+ "Areas": 20,
425
+ "Arenal": 21,
426
+ "Atlantsol\u00eda": 22,
427
+ "Atm.it": 23,
428
+ "AutoZone": 24,
429
+ "Avianca Airlines": 25,
430
+ "Avoca": 26,
431
+ "B+B Parkhaus": 27,
432
+ "BCC Roma": 28,
433
+ "BNP Paribas": 29,
434
+ "BVG": 30,
435
+ "Basic-Fit": 31,
436
+ "BayWa": 32,
437
+ "Bellaflora": 33,
438
+ "Best-One": 34,
439
+ "Bi1": 35,
440
+ "Bico de Xeado": 36,
441
+ "BigMat": 37,
442
+ "Bingo City Center": 38,
443
+ "Bird": 39,
444
+ "Block House": 40,
445
+ "Blokker": 41,
446
+ "Boursorama": 42,
447
+ "Brandy Melville": 43,
448
+ "Bricorama": 44,
449
+ "Buc-ee's": 45,
450
+ "BudgetAir": 46,
451
+ "Bund.de": 47,
452
+ "Bureau Vall\u00e9e": 48,
453
+ "Butlers": 49,
454
+ "Bwin": 50,
455
+ "B\u00e4ckerei Hoefer": 51,
456
+ "B\u00e4ckerei Terbuyken": 52,
457
+ "B\u00e4ckerei Werning": 53,
458
+ "B\u00e4ckermeister Haferkamp": 54,
459
+ "CAP-Markt": 55,
460
+ "CBA": 56,
461
+ "CVMaker.uk": 57,
462
+ "Cafe & Bar Celona": 58,
463
+ "Cafe del Sol": 59,
464
+ "Caja Rural": 60,
465
+ "Cake Box": 61,
466
+ "Calpam": 62,
467
+ "Calvin Klein": 63,
468
+ "Canteen": 64,
469
+ "Careem": 65,
470
+ "Caribou Coffee": 66,
471
+ "Carter's": 67,
472
+ "Casa del Libro": 68,
473
+ "Cats Protection": 69,
474
+ "Centauro Rent a Car": 70,
475
+ "Centrakor": 71,
476
+ "Checkers": 72,
477
+ "Cinemark": 73,
478
+ "Cineplex": 74,
479
+ "Cinesa": 75,
480
+ "Cineworld": 76,
481
+ "CitizenM": 77,
482
+ "City Gross": 78,
483
+ "City Market": 79,
484
+ "City of Quebec": 80,
485
+ "Coin.it": 81,
486
+ "Columbus Cafe": 82,
487
+ "Copa Airlines": 83,
488
+ "Credit Engine": 84,
489
+ "Crunchyroll": 85,
490
+ "Curzon": 86,
491
+ "DGFIP": 87,
492
+ "DPD": 88,
493
+ "DPMCB": 89,
494
+ "Daiso": 90,
495
+ "Day Today": 91,
496
+ "Dec\u00f2": 92,
497
+ "DeepL": 93,
498
+ "Deiters": 94,
499
+ "Der B\u00e4cker Ruetz": 95,
500
+ "Der Rundfunkbeitrag": 96,
501
+ "Deutsche Bank": 97,
502
+ "Deutsche Post": 98,
503
+ "Deutsche Rentenversicherung": 99,
504
+ "Digital River": 100,
505
+ "Disney+": 101,
506
+ "Dnata": 102,
507
+ "Dom Lek\u00f3w": 103,
508
+ "Dr Martens": 104,
509
+ "Dussmann": 105,
510
+ "Dyson": 106,
511
+ "E.ON": 107,
512
+ "EE": 108,
513
+ "EasyPark": 109,
514
+ "Ebl-Naturkost": 110,
515
+ "Eharmony": 111,
516
+ "Elior": 112,
517
+ "Emirates Leisure Retail": 113,
518
+ "Emmerys": 114,
519
+ "Enchilada": 115,
520
+ "Engie": 116,
521
+ "Enrique Tomas": 117,
522
+ "Ergo": 118,
523
+ "EsclatOil": 119,
524
+ "EuroPark": 120,
525
+ "Everest": 121,
526
+ "FEBO": 122,
527
+ "FairPrice": 123,
528
+ "Fina": 124,
529
+ "Fitinn": 125,
530
+ "FlixBus": 126,
531
+ "Footasylum": 127,
532
+ "Four Seasons": 128,
533
+ "Free People": 129,
534
+ "Freie Tankstelle": 130,
535
+ "G La Dalle": 131,
536
+ "GNC": 132,
537
+ "Galaxias": 133,
538
+ "Galaxus": 134,
539
+ "Gall & Gall": 135,
540
+ "Gedimat": 136,
541
+ "Geldmaat": 137,
542
+ "Generali": 138,
543
+ "Getgo": 139,
544
+ "Getr\u00e4nke Hoffmann": 140,
545
+ "GoDaddy": 141,
546
+ "Goldcar": 142,
547
+ "Google Fi": 143,
548
+ "Greffe du Tribunal": 144,
549
+ "Gucci": 145,
550
+ "Guess": 146,
551
+ "HD Hotels": 147,
552
+ "HSBC": 148,
553
+ "Hamburg Airport": 149,
554
+ "Hannaford": 150,
555
+ "Hans im Gl\u00fcck": 151,
556
+ "Harald Nyborg": 152,
557
+ "Hebe": 153,
558
+ "Heinemann": 154,
559
+ "HelloFresh": 155,
560
+ "Hermes": 156,
561
+ "Hilton Garden Inn": 157,
562
+ "Hilton Garden Inn Hotel": 158,
563
+ "Hiper Centro": 159,
564
+ "Holland & Barrett": 160,
565
+ "Hollister Co.": 161,
566
+ "Hollywood Bowl": 162,
567
+ "Hotel Barcel\u00f3": 163,
568
+ "Hotel Mama Shelter": 164,
569
+ "Hotel Silken": 165,
570
+ "Hudson": 166,
571
+ "Hugo Boss": 167,
572
+ "HungryPanda": 168,
573
+ "IC Cash Services": 169,
574
+ "IHK": 170,
575
+ "IQOS": 171,
576
+ "ISS World": 172,
577
+ "In-N-Out Burger": 173,
578
+ "Insomnia Coffee": 174,
579
+ "InterContinental": 175,
580
+ "Interparking": 176,
581
+ "Iperal": 177,
582
+ "Italmark": 178,
583
+ "Jack & Jones": 179,
584
+ "Jacques' Wein-Depot": 180,
585
+ "Juan Valdez": 181,
586
+ "Jump Juice Bar": 182,
587
+ "JustAnswer": 183,
588
+ "K-Rauta": 184,
589
+ "KRAJ": 185,
590
+ "KTC": 186,
591
+ "Kastner & \u00d6hler": 187,
592
+ "Kinepolis": 188,
593
+ "Klarna": 189,
594
+ "Kramb\u00fa\u00f0": 190,
595
+ "Kritikos": 191,
596
+ "LNER": 192,
597
+ "La Sirena": 193,
598
+ "La Vie Claire": 194,
599
+ "Lacoste": 195,
600
+ "Lariviere": 196,
601
+ "Lastminute.com": 197,
602
+ "Le Crobag": 198,
603
+ "Le Five": 199,
604
+ "Lebara": 200,
605
+ "Lefties": 201,
606
+ "Legoland": 202,
607
+ "Leon Restaurants": 203,
608
+ "Les D\u00e9lices": 204,
609
+ "Levaduramadre": 205,
610
+ "Lindt": 206,
611
+ "Lloyds Farmacia": 207,
612
+ "Loblaws": 208,
613
+ "Localiza": 209,
614
+ "Lojas Renner": 210,
615
+ "Lotto": 211,
616
+ "Lovisa": 212,
617
+ "Lush Cosmetics": 213,
618
+ "MVG": 214,
619
+ "Macy's": 215,
620
+ "Maiora": 216,
621
+ "Manufactum": 217,
622
+ "Marco's Pizza": 218,
623
+ "Markant": 219,
624
+ "Markant Supermarkt": 220,
625
+ "Market Basket": 221,
626
+ "Massimo Dutti": 222,
627
+ "Medi-Market": 223,
628
+ "Meijer": 224,
629
+ "Meininger Hotels": 225,
630
+ "Mercado Extra": 226,
631
+ "Mercedes-Benz": 227,
632
+ "Merkur": 228,
633
+ "Meu Super": 229,
634
+ "Micromania": 230,
635
+ "Mladinska": 231,
636
+ "Mondadori Store": 232,
637
+ "Moto Motorway": 233,
638
+ "Mr. Bricolage": 234,
639
+ "M\u00f6belix": 235,
640
+ "NOZ": 236,
641
+ "Nah & Gut": 237,
642
+ "National Rail": 238,
643
+ "Nayax": 239,
644
+ "Netto Denmark": 240,
645
+ "Netto Marken-Discount": 241,
646
+ "Next": 242,
647
+ "Nordsee": 243,
648
+ "Norfa": 244,
649
+ "Notino": 245,
650
+ "O'Reilly Auto Parts": 246,
651
+ "O'Tacos": 247,
652
+ "OK Mobility": 248,
653
+ "OKay": 249,
654
+ "Ochsner Sport": 250,
655
+ "Old Wild West": 251,
656
+ "Ole & Steen": 252,
657
+ "Omio": 253,
658
+ "Omniva": 254,
659
+ "Oney": 255,
660
+ "OpenCor Vending": 256,
661
+ "P.F. Chang's": 257,
662
+ "POLOmarket": 258,
663
+ "PRIO": 259,
664
+ "Pad in Portugal": 260,
665
+ "Panet": 261,
666
+ "Panos": 262,
667
+ "Parken": 263,
668
+ "Patagonia": 264,
669
+ "Peter Pane": 265,
670
+ "Planet Fitness": 266,
671
+ "PlayStation": 267,
672
+ "Point Chaud": 268,
673
+ "Pokawa": 269,
674
+ "Poke House": 270,
675
+ "Polonez": 271,
676
+ "Post Luxembourg": 272,
677
+ "Potraviny": 273,
678
+ "Power.dk": 274,
679
+ "Proxim Supermercado": 275,
680
+ "Putka": 276,
681
+ "Qonto": 277,
682
+ "RTA": 278,
683
+ "Radatz": 279,
684
+ "Ralphs": 280,
685
+ "Real": 281,
686
+ "Riachuelo": 282,
687
+ "Ring": 283,
688
+ "Roblox": 284,
689
+ "Roku": 285,
690
+ "Rontec": 286,
691
+ "Rossopomodoro": 287,
692
+ "Ruch": 288,
693
+ "SFR": 289,
694
+ "Samsung": 290,
695
+ "SandwiChez": 291,
696
+ "Santagloria": 292,
697
+ "Saturn": 293,
698
+ "Second Cup": 294,
699
+ "Selfridges": 295,
700
+ "Servei Estaci\u00f3": 296,
701
+ "Sigma": 297,
702
+ "Silvan": 298,
703
+ "Six": 299,
704
+ "Slim Chickens": 300,
705
+ "Smart Parking": 301,
706
+ "Smarty Cashback": 302,
707
+ "Smullers": 303,
708
+ "Snappy Snaps": 304,
709
+ "Sokos Hotels": 305,
710
+ "Spearhead Taxis": 306,
711
+ "Spinneys": 307,
712
+ "Sp\u00e4tkauf": 308,
713
+ "Stadt Wien": 309,
714
+ "Stadt-Apotheke": 310,
715
+ "Star Tankstelle": 311,
716
+ "Steam": 312,
717
+ "Stroili Oro": 313,
718
+ "SumUp": 314,
719
+ "Suma Supermercados": 315,
720
+ "Super Muffato": 316,
721
+ "SuperFit": 317,
722
+ "Supermercado Bip Bip": 318,
723
+ "Swatch": 319,
724
+ "S\u00f8strene Grene": 320,
725
+ "TGI Friday's": 321,
726
+ "Tabac Presse": 322,
727
+ "Tallink": 323,
728
+ "Tam": 324,
729
+ "Tank & Rast": 325,
730
+ "Tank Ono": 326,
731
+ "Team Autohof": 327,
732
+ "TeeGschwendner": 328,
733
+ "Telef\u00f3nica": 329,
734
+ "Tenpin": 330,
735
+ "The ASH": 331,
736
+ "The Alchemist": 332,
737
+ "The Coffee Bean & Tea Leaf": 333,
738
+ "The Fresh Market": 334,
739
+ "The Good Burger": 335,
740
+ "The North Face": 336,
741
+ "The Range": 337,
742
+ "The niu": 338,
743
+ "Thomann": 339,
744
+ "Three": 340,
745
+ "Tibits": 341,
746
+ "TikTok": 342,
747
+ "Tom Tailor": 343,
748
+ "Toom": 344,
749
+ "Top Oil": 345,
750
+ "Totally Wicked": 346,
751
+ "Toyota": 347,
752
+ "Trader Joe's": 348,
753
+ "Transgourmet": 349,
754
+ "Transports Publics Genevois": 350,
755
+ "Transports Publics Lausannois": 351,
756
+ "Trenitalia": 352,
757
+ "Trgovina Krk": 353,
758
+ "Truffaut": 354,
759
+ "Turris": 355,
760
+ "Tu\u0161": 356,
761
+ "U Express": 357,
762
+ "U-Bahn": 358,
763
+ "UNICEF": 359,
764
+ "Unifree": 360,
765
+ "United Colors of Benetton": 361,
766
+ "Valvi": 362,
767
+ "Venchi": 363,
768
+ "VeniceBeach Fitness": 364,
769
+ "Vio.com": 365,
770
+ "Vival": 366,
771
+ "Vivari Coffee & Bakery": 367,
772
+ "Vivid Seats": 368,
773
+ "Voi Scooters": 369,
774
+ "V\u00ednb\u00fa\u00f0in": 370,
775
+ "Wallapop": 371,
776
+ "Walther Tankstelle": 372,
777
+ "Wasabi": 373,
778
+ "WeWork": 374,
779
+ "Weekday": 375,
780
+ "Wolt": 376,
781
+ "Women'secret": 377,
782
+ "Woolworth": 378,
783
+ "XXL Sports & Outdoor": 379,
784
+ "Yves Rocher": 380,
785
+ "Zaxby's": 381,
786
+ "Zoho": 382,
787
+ "Zolpan": 383,
788
+ "Zorbas Bakery": 384,
789
+ "Zurich Insurance": 385,
790
+ "beObank": 386,
791
+ "eSmoking World": 387,
792
+ "unknown": 0,
793
+ "\u00d6oB": 388,
794
+ "\u0395\u03bb\u03af\u03bd": 389
795
+ },
796
+ "max_position_embeddings": 512,
797
+ "model_type": "distilbert",
798
+ "n_heads": 12,
799
+ "n_layers": 6,
800
+ "pad_token_id": 0,
801
+ "problem_type": "single_label_classification",
802
+ "qa_dropout": 0.1,
803
+ "seq_classif_dropout": 0.2,
804
+ "sinusoidal_pos_embds": false,
805
+ "tie_weights_": true,
806
+ "torch_dtype": "float32",
807
+ "transformers_version": "4.39.3",
808
+ "vocab_size": 30522
809
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2f0acf81694b24d3efc39a23aa14b1ef6450b6a75e24c032239539078d5cf1e
3
+ size 269026072