jojo-ai-mst commited on
Commit
fbeac15
1 Parent(s): c41b00f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -174
README.md CHANGED
@@ -1,201 +1,84 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - thai
5
+ - opt
6
+ - generative ai
7
+ - SEA
8
+ - southeast-asian
9
+ license: mit
10
+ language:
11
+ - th
12
  ---
13
 
14
+ ![thai-opt350m-instruct-logo](thai-opt350m.png)
15
 
16
+ # thai-opt350m-instruct
17
+ a generative language model for thai language based on opt350m
18
 
19
+ ![Thai Open Pretrained Transformer 350M - Generative](/thai-opt350m.png)
20
 
21
+ **Thai-OPT350M-Instruct** is a fine-tuned pretrained transformer for **thai language** based on facebook/opt-350m.
22
 
23
+ Dataset for thai-opt350m-instruct
24
+ - yadapruk/thai-instructions-rallio
25
 
26
+ ## Base Model
27
+ - Facebook Open Pretrained Transformer
28
 
29
+ ## Languages
30
+ - mainly support Thai Language
31
+ - a few English, Chinese, Arabic
32
 
33
+ ## Training
34
+ - epochs - 12
35
+ - training loss - 0.809200
36
 
37
+ # Model Page
 
 
 
 
 
 
38
 
39
+ [https://huggingface.co/jojo-ai-mst/thai-opt350m-instruct](https://huggingface.co/jojo-ai-mst/thai-opt350m-instruct)
40
 
41
+ ## Prompt Format
42
 
43
+ ```
44
+ User: อะไรคือวิธีที่ดีที่สุดในการทําความสะอาดพรม Assistant:
45
+ ```
46
 
47
+ # How to use
48
 
49
+ ```python
50
+ model = AutoModelForCausalLM.from_pretrained("jojo-ai-mst/thai-opt350m-instruct")
51
+ tokenizer = AutoTokenizer.from_pretrained("jojo-ai-mst/thai-opt350m-instruct")
52
 
53
+ def generate_text(prompt, max_length=200, temperature=0.8, top_k=50):
54
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").cuda() # remove .cuda() if only cpu
55
+ output = model.generate(
56
+ input_ids,
57
+ max_length=max_length,
58
+ temperature=temperature,
59
+ top_k=top_k,
60
+ pad_token_id=tokenizer.eos_token_id,
61
+ do_sample=True
62
+ )
63
+ for result in output:
64
+ generated_text = tokenizer.decode(result, skip_special_tokens=True)
65
+ print(generated_text)
66
 
67
+ generate_text("User: อะไรคือวิธีที่ดีที่สุดในการทําความสะอาดพรม Assistant:")
68
+ ```
69
 
70
+ # Date of Release
71
 
72
+ 22/03/2024
73
 
74
+ # License
75
 
76
+ MIT
77
 
78
+ # Author
79
 
80
+ [Min Si Thu](https://www.linkedin.com/in/min-si-thu/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
+ # Notes
83
 
84
+ This ai model is a movement of [MyanmarGPT-Movement](https://github.com/MyanmarGPT-Movement).