File size: 10,555 Bytes
acde26b
 
28c0382
e11fe41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acde26b
e11fe41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17450f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11fe41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c179e2c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
license: apache-2.0
base_model: state-spaces/mamba-2.8b-slimpj
datasets:
- ai2_arc
- unalignment/spicy-3.1
- codeparrot/apps
- facebook/belebele
- boolq
- jondurbin/cinematika-v0.1
- drop
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- cais/mmlu
- Muennighoff/natural-instructions
- openbookqa
- piqa
- Vezora/Tested-22k-Python-Alpaca
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- spider
- squad_v2
- migtissera/Synthia-v1.3
- datasets/winogrande
- nvidia/HelpSteer
- Intel/orca_dpo_pairs
- unalignment/toxic-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- allenai/ultrafeedback_binarized_cleaned 
- Squish42/bluemoon-fandom-1-1-rp-cleaned
- LDJnr/Capybara
- JULIELab/EmoBank
- kingbri/PIPPA-shareGPT
---

# A bagel, with everything

![bagel](bagel.png)

## Overview

An experimental fine-tune of [mamba-2.8b-slimpj](https://hf.co/state-spaces/mamba-2.8b-slimpj) using [bagel](https://github.com/jondurbin/bagel)

Default recommended system prompt:
```
You are a helpful, unbiased, uncensored assistant.
```

Supports several prompt formats, but you can also use `tokenizer.apply_chat_template`

This model did surprisingly well on MT-Bench, for a 2.8b that was only pre-trained on the slimpajama dataset!
```text
########## First turn ##########
                            score
model               turn         
bagel-dpo-2.8b-v0.2 1     5.10625

########## Second turn ##########
                           score
model               turn        
bagel-dpo-2.8b-v0.2 2     4.7375

########## Average ##########
                        score
model                        
bagel-dpo-2.8b-v0.2  4.921875
```

## Example chat script

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("bagel-final-2.8b-v0.2")
model = MambaLMHeadModel.from_pretrained("bagel-final-2.8b-v0.2", device="cuda", dtype=torch.float32)

messages = [{"role": "system", "content": "You are a helpful, unbiased, uncensored assistant."}]
while True:
    user_message = input("[INST] ")
    messages.append({"role": "user", "content": user_message})
    input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
    out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.9, top_p=0.7, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.07)
    decoded = tokenizer.batch_decode(out)[0].split("[/INST]")[-1].replace("</s>", "").strip()
    messages.append({"role": "assistant", "content": decoded})
    print("[/INST]", decoded)
```

## SFT data sources

*Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check*

- [ai2_arc](https://huggingface.co/datasets/ai2_arc)
  - Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
- [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
  - Variety of categories of synthetic instructions generated by gpt-4.
- [apps](https://huggingface.co/datasets/codeparrot/apps)
  - Python coding dataset with 10k problems.
- [belebele](https://huggingface.co/datasets/facebook/belebele)
  - Multi-lingual reading comprehension dataset.
- [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
  - Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
- [boolq](https://huggingface.co/datasets/boolq)
  - Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
- [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
  - Multi-turn dataset used to create the capybara models.
- [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
  - RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
- [drop](https://huggingface.co/datasets/drop)
  - More reading comprehension.
- [emobank](https://github.com/JULIELab/EmoBank)
  - Emotion annotations using the Valence-Arousal-Domninance scheme.
- [gutenberg](https://www.gutenberg.org/) (plain text)
  - Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
- [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
  - Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
- [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
  - Composite dataset with a variety of math-related tasks and problem/question formats.
- [mmlu](https://huggingface.co/datasets/cais/mmlu)
  - Massive Multitask Language Understanding - a wide variety of questions about various subject matters.
- [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
  - Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
- [openbookqa](https://huggingface.co/datasets/openbookqa)
  - Question answering dataset.
- [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
  - Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
- [piqa](https://huggingface.co/datasets/piqa)
  - Phyiscal interaction question answering.
- [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
  - Python instruction response pairs, validated as functional.
- [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
  - Code problems and solutions in a variety of programming languages taken from rosettacode.org.
- [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
  - Collection of ~500k gpt-4 verified chats from OpenOrca.
- [spider](https://huggingface.co/datasets/spider)
  - SQL-targeted dataset.
- [squad_v2](https://huggingface.co/datasets/squad_v2)
  - Contextual question answering (RAG).
- [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
  - GPT-4 generated data using advanced prompting from Migel Tissera.
- [winogrande](https://huggingface.co/datasets/winogrande)
  - Fill in the blank style prompts.

## DPO data sources

- [airoboros 3.1](https://huggingface.co/datasets/unalignment/spicy-3.1) vs [airoboros 2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1)
  - The creative/writing tasks from airoboros-2.2.1 were re-generated using gpt4-0314 and a custom prompt to get longer, more creative, less clichè responses for airoboros 3.1, so we can use the shorter/boring version as the "rejected" value and the rerolled response as "chosen"
- [helpsteer](https://huggingface.co/datasets/nvidia/HelpSteer)
  - Really neat dataset provided by the folks at NVidia with human annotation across a variety of metrics.  Only items with the highest "correctness" value were used for DPO here, with the highest scoring output as "chosen" and random lower scoring value as "rejected"
- [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
  - Another interesting dataset by Intel, which provides various DPO pairs generated from prompts included in the SlimOrca dataset.
- [toxic-dpo](https://huggingface.co/datasets/unalignment/toxic-dpo-v0.1)
  - __*highly toxic and potentially illegal content!*__ De-censorship, for academic and lawful purposes only, of course.  Generated by llama-2-70b via prompt engineering.
- [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
  - DPO pairs meant to increase truthfulness of the model, e.g. common misconceptions, differentiate between AI assistants and roleplayed human in terms of corporeal awareness/locality/etc.
- [ultrafeedback](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned)
  - One of the bits of magic behind the Zephyr model.  Only the items with a chosen score of 8 or higher were included.

Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss).

## Prompt formatting

In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta).
I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format.

This means each epoch of our fine-tune is really basically 4 epochs.  So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs).  I am testing with a single epoch using a relatively low learning rate.

### Alpaca (sort of)

```
Below is an instruction that describes a task.  Write a response that appropriately completes the request.

### Instruction:
{system prompt, if provided}
{instruction}

### Response:
```

The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.

### Vicuna

```
{system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
USER: {instruction}
ASSISTANT: 
```

### ChatML (sort of)

I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong).

So, instead of:
```text
{bos}<|im_start|>{role}
{text}
<|im_end|>{eos}
```

I just changed it to:
```text
{bos}{role}
{text}
{eos}
```

If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing.  And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune.

### Llama-2 chat

```
[INST] <<SYS>>
{system}
<</SYS>>

{instruction} [/INST]
```

### Contribute

If you're interested in new functionality/datasets, take a look at [bagel repo](https://github.com/jondurbin/bagel) and either make a PR or open an issue with details.

To help me with the OpenAI/compute costs:

- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf