File size: 10,555 Bytes
acde26b 28c0382 e11fe41 acde26b e11fe41 f17450f e11fe41 c179e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
license: apache-2.0
base_model: state-spaces/mamba-2.8b-slimpj
datasets:
- ai2_arc
- unalignment/spicy-3.1
- codeparrot/apps
- facebook/belebele
- boolq
- jondurbin/cinematika-v0.1
- drop
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- cais/mmlu
- Muennighoff/natural-instructions
- openbookqa
- piqa
- Vezora/Tested-22k-Python-Alpaca
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- spider
- squad_v2
- migtissera/Synthia-v1.3
- datasets/winogrande
- nvidia/HelpSteer
- Intel/orca_dpo_pairs
- unalignment/toxic-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- allenai/ultrafeedback_binarized_cleaned
- Squish42/bluemoon-fandom-1-1-rp-cleaned
- LDJnr/Capybara
- JULIELab/EmoBank
- kingbri/PIPPA-shareGPT
---
# A bagel, with everything
![bagel](bagel.png)
## Overview
An experimental fine-tune of [mamba-2.8b-slimpj](https://hf.co/state-spaces/mamba-2.8b-slimpj) using [bagel](https://github.com/jondurbin/bagel)
Default recommended system prompt:
```
You are a helpful, unbiased, uncensored assistant.
```
Supports several prompt formats, but you can also use `tokenizer.apply_chat_template`
This model did surprisingly well on MT-Bench, for a 2.8b that was only pre-trained on the slimpajama dataset!
```text
########## First turn ##########
score
model turn
bagel-dpo-2.8b-v0.2 1 5.10625
########## Second turn ##########
score
model turn
bagel-dpo-2.8b-v0.2 2 4.7375
########## Average ##########
score
model
bagel-dpo-2.8b-v0.2 4.921875
```
## Example chat script
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("bagel-final-2.8b-v0.2")
model = MambaLMHeadModel.from_pretrained("bagel-final-2.8b-v0.2", device="cuda", dtype=torch.float32)
messages = [{"role": "system", "content": "You are a helpful, unbiased, uncensored assistant."}]
while True:
user_message = input("[INST] ")
messages.append({"role": "user", "content": user_message})
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.9, top_p=0.7, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.07)
decoded = tokenizer.batch_decode(out)[0].split("[/INST]")[-1].replace("</s>", "").strip()
messages.append({"role": "assistant", "content": decoded})
print("[/INST]", decoded)
```
## SFT data sources
*Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check*
- [ai2_arc](https://huggingface.co/datasets/ai2_arc)
- Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
- [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
- Variety of categories of synthetic instructions generated by gpt-4.
- [apps](https://huggingface.co/datasets/codeparrot/apps)
- Python coding dataset with 10k problems.
- [belebele](https://huggingface.co/datasets/facebook/belebele)
- Multi-lingual reading comprehension dataset.
- [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
- Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
- [boolq](https://huggingface.co/datasets/boolq)
- Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
- [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
- Multi-turn dataset used to create the capybara models.
- [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
- RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
- [drop](https://huggingface.co/datasets/drop)
- More reading comprehension.
- [emobank](https://github.com/JULIELab/EmoBank)
- Emotion annotations using the Valence-Arousal-Domninance scheme.
- [gutenberg](https://www.gutenberg.org/) (plain text)
- Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
- [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
- Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
- [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- Composite dataset with a variety of math-related tasks and problem/question formats.
- [mmlu](https://huggingface.co/datasets/cais/mmlu)
- Massive Multitask Language Understanding - a wide variety of questions about various subject matters.
- [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
- Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
- [openbookqa](https://huggingface.co/datasets/openbookqa)
- Question answering dataset.
- [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
- Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
- [piqa](https://huggingface.co/datasets/piqa)
- Phyiscal interaction question answering.
- [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
- Python instruction response pairs, validated as functional.
- [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
- Code problems and solutions in a variety of programming languages taken from rosettacode.org.
- [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
- Collection of ~500k gpt-4 verified chats from OpenOrca.
- [spider](https://huggingface.co/datasets/spider)
- SQL-targeted dataset.
- [squad_v2](https://huggingface.co/datasets/squad_v2)
- Contextual question answering (RAG).
- [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
- GPT-4 generated data using advanced prompting from Migel Tissera.
- [winogrande](https://huggingface.co/datasets/winogrande)
- Fill in the blank style prompts.
## DPO data sources
- [airoboros 3.1](https://huggingface.co/datasets/unalignment/spicy-3.1) vs [airoboros 2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1)
- The creative/writing tasks from airoboros-2.2.1 were re-generated using gpt4-0314 and a custom prompt to get longer, more creative, less clichè responses for airoboros 3.1, so we can use the shorter/boring version as the "rejected" value and the rerolled response as "chosen"
- [helpsteer](https://huggingface.co/datasets/nvidia/HelpSteer)
- Really neat dataset provided by the folks at NVidia with human annotation across a variety of metrics. Only items with the highest "correctness" value were used for DPO here, with the highest scoring output as "chosen" and random lower scoring value as "rejected"
- [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- Another interesting dataset by Intel, which provides various DPO pairs generated from prompts included in the SlimOrca dataset.
- [toxic-dpo](https://huggingface.co/datasets/unalignment/toxic-dpo-v0.1)
- __*highly toxic and potentially illegal content!*__ De-censorship, for academic and lawful purposes only, of course. Generated by llama-2-70b via prompt engineering.
- [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
- DPO pairs meant to increase truthfulness of the model, e.g. common misconceptions, differentiate between AI assistants and roleplayed human in terms of corporeal awareness/locality/etc.
- [ultrafeedback](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned)
- One of the bits of magic behind the Zephyr model. Only the items with a chosen score of 8 or higher were included.
Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss).
## Prompt formatting
In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta).
I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format.
This means each epoch of our fine-tune is really basically 4 epochs. So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs). I am testing with a single epoch using a relatively low learning rate.
### Alpaca (sort of)
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{system prompt, if provided}
{instruction}
### Response:
```
The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.
### Vicuna
```
{system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
USER: {instruction}
ASSISTANT:
```
### ChatML (sort of)
I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong).
So, instead of:
```text
{bos}<|im_start|>{role}
{text}
<|im_end|>{eos}
```
I just changed it to:
```text
{bos}{role}
{text}
{eos}
```
If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing. And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune.
### Llama-2 chat
```
[INST] <<SYS>>
{system}
<</SYS>>
{instruction} [/INST]
```
### Contribute
If you're interested in new functionality/datasets, take a look at [bagel repo](https://github.com/jondurbin/bagel) and either make a PR or open an issue with details.
To help me with the OpenAI/compute costs:
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf |