--- tags: - merge - mergekit - lazymergekit - SciPhi/SciPhi-Mistral-7B-32k base_model: - SciPhi/SciPhi-Mistral-7B-32k --- # SciPhi-Mistral-7B-32k-sliced SciPhi-Mistral-7B-32k-sliced is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SciPhi/SciPhi-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k) ## 🧩 Configuration ```yaml slices: - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [0, 0] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [1, 1] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [3, 3] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [5, 5] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [6, 6] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [10, 10] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [17, 17] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [18, 18] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [19, 19] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [20, 20] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [23, 23] - sources: - model: SciPhi/SciPhi-Mistral-7B-32k layer_range: [32, 32] merge_method: slerp base_model: Locutusque/TinyMistral-248M-v2.5-Instruct parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.3 dtype: float16 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jtatman/SciPhi-Mistral-7B-32k-sliced" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```