--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 datasets: - fancyzhx/ag_news library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Google gets a bounce, ends its first day up 18 percent Shares of Google leaped \$15.34, or 18 percent, to \$100.34 on the Nasdaq exchange yesterday in an opening day of trading that harkened back to the wild run-ups of the dot-com era. - text: Jobs Data Hold Promise of Stronger Growth (AP) AP - Employers stepped up hiring in August, expanding payrolls by 144,000 and lowering the unemployment rate marginally to 5.4 percent. While the figures didn't amount to a national job fair, analysts said, they did hold out the promise of stronger growth following the summer lull. - text: Canadians in Southeast Asia at risk from terrorist groups, report cautions (Canadian Press) Canadian Press - OTTAWA (CP) - Islamic extremists with links to Osama bin Laden's al-Qaida network pose a threat to Canadians living in Southeast Asia, warns a newly obtained intelligence report. - text: 'Cricket telecast: Opportunity for lost bidders EVEN as Zee Telefilms chalks out its strategy for the cricket rights, legal experts are of the opinion that the Bombay High Court #39;s suggestion for a fresh round of bidding could open options for the other broadcasters who had lost out in the first round.' - text: UN Security Council to Witness Sudan Peace Pledge NAIROBI (Reuters) - The Sudanese government and its southern rebel opponents have agreed to sign a pledge in the Kenyan capital on Friday to formally end a brutal 21-year-old civil war, with U.N. Security Council ambassadors as witnesses. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: fancyzhx/ag_news type: fancyzhx/ag_news split: test metrics: - type: accuracy value: 0.7647368421052632 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [fancyzhx/ag_news](https://huggingface.co/datasets/fancyzhx/ag_news) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes - **Training Dataset:** [fancyzhx/ag_news](https://huggingface.co/datasets/fancyzhx/ag_news) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sci/Tech | | | Business | | | World | | | Sports | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7647 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Google gets a bounce, ends its first day up 18 percent Shares of Google leaped \$15.34, or 18 percent, to \$100.34 on the Nasdaq exchange yesterday in an opening day of trading that harkened back to the wild run-ups of the dot-com era.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 14 | 39.5694 | 62 | | Label | Training Sample Count | |:---------|:----------------------| | World | 28 | | Sports | 16 | | Business | 18 | | Sci/Tech | 10 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0043 | 1 | 0.4093 | - | | 0.2146 | 50 | 0.2095 | - | | 0.4292 | 100 | 0.0329 | - | | 0.6438 | 150 | 0.0008 | - | | 0.8584 | 200 | 0.0002 | - | | **1.0** | **233** | **-** | **0.1542** | | 1.0730 | 250 | 0.0002 | - | | 1.2876 | 300 | 0.0001 | - | | 1.5021 | 350 | 0.0002 | - | | 1.7167 | 400 | 0.0001 | - | | 1.9313 | 450 | 0.0001 | - | | 2.0 | 466 | - | 0.1631 | | 2.1459 | 500 | 0.0001 | - | | 2.3605 | 550 | 0.0001 | - | | 2.5751 | 600 | 0.0001 | - | | 2.7897 | 650 | 0.0001 | - | | 3.0 | 699 | - | 0.1648 | | 3.0043 | 700 | 0.0001 | - | | 3.2189 | 750 | 0.0001 | - | | 3.4335 | 800 | 0.0001 | - | | 3.6481 | 850 | 0.0001 | - | | 3.8627 | 900 | 0.0001 | - | | 4.0 | 932 | - | 0.1663 | | 4.0773 | 950 | 0.0001 | - | | 4.2918 | 1000 | 0.0 | - | | 4.5064 | 1050 | 0.0 | - | | 4.7210 | 1100 | 0.0001 | - | | 4.9356 | 1150 | 0.0001 | - | | 5.0 | 1165 | - | 0.1648 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.9.19 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.4.0 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```