Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 154.41 +/- 94.09
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efe4b5c05f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe4b5c0680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe4b5c0710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe4b5c07a0>", "_build": "<function ActorCriticPolicy._build at 0x7efe4b5c0830>", "forward": "<function ActorCriticPolicy.forward at 0x7efe4b5c08c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe4b5c0950>", "_predict": "<function ActorCriticPolicy._predict at 0x7efe4b5c09e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe4b5c0a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe4b5c0b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe4b5c0b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efe4b6122d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651762018.1948504, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGh6jb6QPt8+y4o5PkZ0Xb7q9Ze9jmsDPgAAAAAAAAAAM77CvApsCLv7ki07NuLausvUDrzmZcG7AACAPwAAgD92BYG+iLOKP/GQKL2No4++SAC5vY70Hj4AAAAAAAAAAJqb5bzs2cG5CRiKOqJTrLRd5tG5SCqjuQAAgD8AAIA/M59XPSkYZboDM7o5cSditdn+T7u9utW4AACAPwAAgD8NPfC9uHvlu0iK2Tuvzz48DN1NPbQqJr0AAIA/AACAPxr0Nj096i25RBOrOWfRm7a79Ry7fNXLuAAAgD8AAIA/4JdlPldEPjx7V5C8Y6dnugpX1z2Lc167AACAPwAAgD9Tlky+LHOPPKRCybohTiQ7FW4YvsX0GLwAAIA/AACAP2Y15LzDaQu6xSHLu9+PzzUGoDi7jkw/tQAAgD8AAIA/M/frO1KokrloH5c6VSontltRbTtyYLK5AACAPwAAgD8mItq9uGb3uUmAuzvpyac2Wj/AuiXlnTUAAIA/AACAP71vkr7kL1s+59okPR+bGr55Pr+9BWr7vAAAAAAAAAAAsz0LviloXbpMVTy8jrw4vQ9jtro2hUE9AAAAAAAAAAAAHpU97NHbufdZM7yBecI2irV+uzV6M7YAAIA/AACAP9pKhj1kjaQ+UiOXvRdpYr7FTr89q+IbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUiegibDJYkCUhpRSlIwBbJRN6AOMAXSUR0CGpTzAeq7zdX2UKGgGaAloD0MIMbWlDvLaAMCUhpRSlGgVS/poFkdAhrTFkYoAn3V9lChoBmgJaA9DCKDFUiRfeTfAlIaUUpRoFUvpaBZHQIa+xaaCtih1fZQoaAZoCWgPQwie6/twkK1dQJSGlFKUaBVN6ANoFkdAhsHySNfgJnV9lChoBmgJaA9DCEJfevvzx2VAlIaUUpRoFU3oA2gWR0CGwkjJMg2ZdX2UKGgGaAloD0MINh5ssdvtV0CUhpRSlGgVTegDaBZHQIbID7TDwYt1fZQoaAZoCWgPQwjEswQZAStYQJSGlFKUaBVN6ANoFkdAhsgVJL/S6XV9lChoBmgJaA9DCCwujspNEVZAlIaUUpRoFU3oA2gWR0CGyQMOPNmldX2UKGgGaAloD0MIMiJRaFmRXECUhpRSlGgVTegDaBZHQIcbAyoGY8d1fZQoaAZoCWgPQwh8t3njpPNWQJSGlFKUaBVN6ANoFkdAhyNoAOrhi3V9lChoBmgJaA9DCOkPzTy5RixAlIaUUpRoFUvzaBZHQIdOCCcwxnF1fZQoaAZoCWgPQwi0rzxITxdcQJSGlFKUaBVN6ANoFkdAh07W2w3YMHV9lChoBmgJaA9DCIEmwoanKFRAlIaUUpRoFU3oA2gWR0CHWwh9LHuJdX2UKGgGaAloD0MIhq3ZykuxXUCUhpRSlGgVTegDaBZHQIdo2pQ1rIp1fZQoaAZoCWgPQwhjf9k9eXghQJSGlFKUaBVN6ANoFkdAh208rRSgoXV9lChoBmgJaA9DCDxodt1bBltAlIaUUpRoFU3oA2gWR0CHcOa0hNdrdX2UKGgGaAloD0MIti+gF+6zVUCUhpRSlGgVTegDaBZHQId7NK28Zk11fZQoaAZoCWgPQwgzw0ZZv3ZjQJSGlFKUaBVN6ANoFkdAh4N5byH2y3V9lChoBmgJaA9DCNaPTfIjDGxAlIaUUpRoFU2lAWgWR0CHlDrCWNWEdX2UKGgGaAloD0MIZwqd11gwYECUhpRSlGgVTegDaBZHQIeUtMK1G9Z1fZQoaAZoCWgPQwh7MZQT7aovQJSGlFKUaBVNEAFoFkdAh5tbxd6cAnV9lChoBmgJaA9DCKHWNO+4tWFAlIaUUpRoFU3oA2gWR0CHnoMTewcHdX2UKGgGaAloD0MIuOUjKekHRkCUhpRSlGgVTegDaBZHQIeho77sOXp1fZQoaAZoCWgPQwj7kSIyrKRhQJSGlFKUaBVN6ANoFkdAh6H0OVgQYnV9lChoBmgJaA9DCC7JAbuaqmBAlIaUUpRoFU3oA2gWR0CHp2Mhouf3dX2UKGgGaAloD0MIwCMqVLdWYECUhpRSlGgVTegDaBZHQIenZnlGPPt1fZQoaAZoCWgPQwiOyHcpdcFWQJSGlFKUaBVN6ANoFkdAh6hI/7iyZHV9lChoBmgJaA9DCMl06PS8EyNAlIaUUpRoFUv1aBZHQIepCNVBD5V1fZQoaAZoCWgPQwgdylAV0+JhQJSGlFKUaBVN6ANoFkdAh/dQ84gieXV9lChoBmgJaA9DCMO7XMR3fjxAlIaUUpRoFU0TAWgWR0CH/Q4YrJ8wdX2UKGgGaAloD0MIX2HB/YB/IsCUhpRSlGgVS/FoFkdAiB4XvhIe5nV9lChoBmgJaA9DCD/IsmDirGBAlIaUUpRoFU3oA2gWR0CIKIpF1B+ndX2UKGgGaAloD0MIW7VrQlrWWkCUhpRSlGgVTegDaBZHQIg1yTt9hJB1fZQoaAZoCWgPQwhvEoPAytVZQJSGlFKUaBVN6ANoFkdAiEPaqS5iE3V9lChoBmgJaA9DCJ0QOuiSjmFAlIaUUpRoFU3oA2gWR0CISGMOwxFidX2UKGgGaAloD0MIxAd2/BesTECUhpRSlGgVTegDaBZHQIhYDp/wy7B1fZQoaAZoCWgPQwiOdtzwO61iQJSGlFKUaBVN6ANoFkdAiHU5vLowEnV9lChoBmgJaA9DCAdCsoAJbl1AlIaUUpRoFU3oA2gWR0CIdceRxLkCdX2UKGgGaAloD0MIp11MM92aXUCUhpRSlGgVTegDaBZHQIiAWqebutx1fZQoaAZoCWgPQwiTpkHRPO1dQJSGlFKUaBVN6ANoFkdAiIOP99+gDnV9lChoBmgJaA9DCIyFIXJ6q2BAlIaUUpRoFU3oA2gWR0CIg+f7JnxsdX2UKGgGaAloD0MI1SKimDzmYECUhpRSlGgVTegDaBZHQIiJ7QmeDnN1fZQoaAZoCWgPQwiuZwjHrC1hQJSGlFKUaBVN6ANoFkdAiInwuM+/xnV9lChoBmgJaA9DCP8gkiHHwF9AlIaUUpRoFU3oA2gWR0CIiuhV2icodX2UKGgGaAloD0MIc0hqoWRbYkCUhpRSlGgVTegDaBZHQIiLo53kgfV1fZQoaAZoCWgPQwjvxoLCoGpHQJSGlFKUaBVL22gWR0CIla4z7/GVdX2UKGgGaAloD0MIVg3C3G5MZUCUhpRSlGgVTegDaBZHQIjhpUHY6GR1fZQoaAZoCWgPQwjjiSDOwwkuQJSGlFKUaBVL+mgWR0CI6cT5ftx/dX2UKGgGaAloD0MIjLrW3qfaJcCUhpRSlGgVTRcBaBZHQIjwUHObAk91fZQoaAZoCWgPQwha9E4F3KJeQJSGlFKUaBVN6ANoFkdAiQD2/8EV33V9lChoBmgJaA9DCC18fa1LXF5AlIaUUpRoFU3oA2gWR0CJCl+2mYShdX2UKGgGaAloD0MIWoKMgAogXkCUhpRSlGgVTegDaBZHQIkWFVghKUV1fZQoaAZoCWgPQwgIclDCTGJhQJSGlFKUaBVN6ANoFkdAiSK6Wom5UnV9lChoBmgJaA9DCOdtbHYkLGJAlIaUUpRoFU3oA2gWR0CJJvIRRMvidX2UKGgGaAloD0MIOKJ71jUKYUCUhpRSlGgVTegDaBZHQIk1pBNVR1p1fZQoaAZoCWgPQwiVgQNauvdjQJSGlFKUaBVN6ANoFkdAiVIlL39JjHV9lChoBmgJaA9DCMMtH0lJglxAlIaUUpRoFU3oA2gWR0CJXcw/PgNxdX2UKGgGaAloD0MIo5HPK55PYkCUhpRSlGgVTegDaBZHQIlhLPfKp1l1fZQoaAZoCWgPQwirP8IwYF5bQJSGlFKUaBVN6ANoFkdAiWGTRx95QnV9lChoBmgJaA9DCHjUmBBz5mNAlIaUUpRoFU3oA2gWR0CJZ+m+j/ModX2UKGgGaAloD0MIKZfGLzxOYkCUhpRSlGgVTegDaBZHQIlpBP69CeF1fZQoaAZoCWgPQwjAety32ppkQJSGlFKUaBVN6ANoFkdAiXZ+DnNgSnV9lChoBmgJaA9DCB2SWigZsGFAlIaUUpRoFU3oA2gWR0CJw6lOXVsldX2UKGgGaAloD0MI+iZNg6J52b+UhpRSlGgVS/RoFkdAicVLSmZVn3V9lChoBmgJaA9DCC+nBMQkvALAlIaUUpRoFU0rAWgWR0CJypw5vLowdX2UKGgGaAloD0MIkYE8u3yDYUCUhpRSlGgVTegDaBZHQInMZzo2XLN1fZQoaAZoCWgPQwi044bfTUFdQJSGlFKUaBVN6ANoFkdAidL17IDHO3V9lChoBmgJaA9DCGjPZWoS/ClAlIaUUpRoFU0xAWgWR0CJ1gu01IiDdX2UKGgGaAloD0MIVaaYgyDmZECUhpRSlGgVTegDaBZHQIni1OqNp/R1fZQoaAZoCWgPQwjbhlEQPM5kQJSGlFKUaBVN6ANoFkdAievUrsjVx3V9lChoBmgJaA9DCP8DrFW7hlxAlIaUUpRoFU3oA2gWR0CJ9wsasIVudX2UKGgGaAloD0MIeLeyRGdwUkCUhpRSlGgVTegDaBZHQIoDb1ZkkKN1fZQoaAZoCWgPQwgVxEDXPt5gQJSGlFKUaBVN6ANoFkdAigeXXiBGx3V9lChoBmgJaA9DCPCLS1XaqV9AlIaUUpRoFU3oA2gWR0CKFg9SMtK7dX2UKGgGaAloD0MItksbDku7JkCUhpRSlGgVTSwBaBZHQIooeyNXHR11fZQoaAZoCWgPQwi1boPab49YQJSGlFKUaBVN6ANoFkdAijJn9m6GxnV9lChoBmgJaA9DCJYKKqp+411AlIaUUpRoFU3oA2gWR0CKQHFEy+HrdX2UKGgGaAloD0MIbhgFwWOZYkCUhpRSlGgVTegDaBZHQIpHqVGCqZN1fZQoaAZoCWgPQwjq6/ma5WNjQJSGlFKUaBVN6ANoFkdAileoexOclXV9lChoBmgJaA9DCKn26XjMgDxAlIaUUpRoFU0QAWgWR0CKV7J+UhV3dX2UKGgGaAloD0MI8xsmGqTPXUCUhpRSlGgVTegDaBZHQIql3mzSkTJ1fZQoaAZoCWgPQwhORwA3C6hgQJSGlFKUaBVN6ANoFkdAiqd7iqABk3V9lChoBmgJaA9DCG6GG/B5nmFAlIaUUpRoFU3oA2gWR0CKrNjn3cpLdX2UKGgGaAloD0MIym5m9COEYECUhpRSlGgVTegDaBZHQIqubBEa2nd1fZQoaAZoCWgPQwhDG4ANiKNXQJSGlFKUaBVN6ANoFkdAirRwumJm/XV9lChoBmgJaA9DCPZFQlvOOl1AlIaUUpRoFU3oA2gWR0CKt0h9srNGdX2UKGgGaAloD0MIJa5jXHERJMCUhpRSlGgVTR4BaBZHQIrAv/WDpTx1fZQoaAZoCWgPQwgKZ7eWScpgQJSGlFKUaBVN6ANoFkdAisL4bbUPQXV9lChoBmgJaA9DCKCJsOHpKmFAlIaUUpRoFU3oA2gWR0CKyv9bX6IndX2UKGgGaAloD0MIpBzMJsBAQ8CUhpRSlGgVTSoBaBZHQIrSaiwjdHl1fZQoaAZoCWgPQwiTHRuBeC02QJSGlFKUaBVNCwFoFkdAitLTEzfrKXV9lChoBmgJaA9DCMzxCkRPGWVAlIaUUpRoFU3oA2gWR0CK4FCJoCdSdX2UKGgGaAloD0MIQE6YMJo4XkCUhpRSlGgVTegDaBZHQIrkCKm8/Ux1fZQoaAZoCWgPQwgzMshdhI9gQJSGlFKUaBVN6ANoFkdAivFOLBKtgnV9lChoBmgJaA9DCET8w5YeDQ7AlIaUUpRoFU1HAWgWR0CLA8urZJ05dX2UKGgGaAloD0MIJSL8iyDqZECUhpRSlGgVTegDaBZHQIsMOLWI42l1fZQoaAZoCWgPQwhywRn8/SJDQJSGlFKUaBVL2GgWR0CLFZdC3PRidX2UKGgGaAloD0MIcAorFVSXYkCUhpRSlGgVTegDaBZHQIsafEn9ehR1fZQoaAZoCWgPQwjPvBx238paQJSGlFKUaBVN6ANoFkdAiyFd9+gDinV9lChoBmgJaA9DCEZ55uUwxWBAlIaUUpRoFU3oA2gWR0CLMNL7oB7vdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e767c097bffee9bdebff68f87035ebfc9f133a98e0594ad2dd0d4a8ff22c895
|
3 |
+
size 144036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efe4b5c05f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe4b5c0680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe4b5c0710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe4b5c07a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efe4b5c0830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efe4b5c08c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe4b5c0950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efe4b5c09e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe4b5c0a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe4b5c0b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe4b5c0b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efe4b6122d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651762018.1948504,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGh6jb6QPt8+y4o5PkZ0Xb7q9Ze9jmsDPgAAAAAAAAAAM77CvApsCLv7ki07NuLausvUDrzmZcG7AACAPwAAgD92BYG+iLOKP/GQKL2No4++SAC5vY70Hj4AAAAAAAAAAJqb5bzs2cG5CRiKOqJTrLRd5tG5SCqjuQAAgD8AAIA/M59XPSkYZboDM7o5cSditdn+T7u9utW4AACAPwAAgD8NPfC9uHvlu0iK2Tuvzz48DN1NPbQqJr0AAIA/AACAPxr0Nj096i25RBOrOWfRm7a79Ry7fNXLuAAAgD8AAIA/4JdlPldEPjx7V5C8Y6dnugpX1z2Lc167AACAPwAAgD9Tlky+LHOPPKRCybohTiQ7FW4YvsX0GLwAAIA/AACAP2Y15LzDaQu6xSHLu9+PzzUGoDi7jkw/tQAAgD8AAIA/M/frO1KokrloH5c6VSontltRbTtyYLK5AACAPwAAgD8mItq9uGb3uUmAuzvpyac2Wj/AuiXlnTUAAIA/AACAP71vkr7kL1s+59okPR+bGr55Pr+9BWr7vAAAAAAAAAAAsz0LviloXbpMVTy8jrw4vQ9jtro2hUE9AAAAAAAAAAAAHpU97NHbufdZM7yBecI2irV+uzV6M7YAAIA/AACAP9pKhj1kjaQ+UiOXvRdpYr7FTr89q+IbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUiegibDJYkCUhpRSlIwBbJRN6AOMAXSUR0CGpTzAeq7zdX2UKGgGaAloD0MIMbWlDvLaAMCUhpRSlGgVS/poFkdAhrTFkYoAn3V9lChoBmgJaA9DCKDFUiRfeTfAlIaUUpRoFUvpaBZHQIa+xaaCtih1fZQoaAZoCWgPQwie6/twkK1dQJSGlFKUaBVN6ANoFkdAhsHySNfgJnV9lChoBmgJaA9DCEJfevvzx2VAlIaUUpRoFU3oA2gWR0CGwkjJMg2ZdX2UKGgGaAloD0MINh5ssdvtV0CUhpRSlGgVTegDaBZHQIbID7TDwYt1fZQoaAZoCWgPQwjEswQZAStYQJSGlFKUaBVN6ANoFkdAhsgVJL/S6XV9lChoBmgJaA9DCCwujspNEVZAlIaUUpRoFU3oA2gWR0CGyQMOPNmldX2UKGgGaAloD0MIMiJRaFmRXECUhpRSlGgVTegDaBZHQIcbAyoGY8d1fZQoaAZoCWgPQwh8t3njpPNWQJSGlFKUaBVN6ANoFkdAhyNoAOrhi3V9lChoBmgJaA9DCOkPzTy5RixAlIaUUpRoFUvzaBZHQIdOCCcwxnF1fZQoaAZoCWgPQwi0rzxITxdcQJSGlFKUaBVN6ANoFkdAh07W2w3YMHV9lChoBmgJaA9DCIEmwoanKFRAlIaUUpRoFU3oA2gWR0CHWwh9LHuJdX2UKGgGaAloD0MIhq3ZykuxXUCUhpRSlGgVTegDaBZHQIdo2pQ1rIp1fZQoaAZoCWgPQwhjf9k9eXghQJSGlFKUaBVN6ANoFkdAh208rRSgoXV9lChoBmgJaA9DCDxodt1bBltAlIaUUpRoFU3oA2gWR0CHcOa0hNdrdX2UKGgGaAloD0MIti+gF+6zVUCUhpRSlGgVTegDaBZHQId7NK28Zk11fZQoaAZoCWgPQwgzw0ZZv3ZjQJSGlFKUaBVN6ANoFkdAh4N5byH2y3V9lChoBmgJaA9DCNaPTfIjDGxAlIaUUpRoFU2lAWgWR0CHlDrCWNWEdX2UKGgGaAloD0MIZwqd11gwYECUhpRSlGgVTegDaBZHQIeUtMK1G9Z1fZQoaAZoCWgPQwh7MZQT7aovQJSGlFKUaBVNEAFoFkdAh5tbxd6cAnV9lChoBmgJaA9DCKHWNO+4tWFAlIaUUpRoFU3oA2gWR0CHnoMTewcHdX2UKGgGaAloD0MIuOUjKekHRkCUhpRSlGgVTegDaBZHQIeho77sOXp1fZQoaAZoCWgPQwj7kSIyrKRhQJSGlFKUaBVN6ANoFkdAh6H0OVgQYnV9lChoBmgJaA9DCC7JAbuaqmBAlIaUUpRoFU3oA2gWR0CHp2Mhouf3dX2UKGgGaAloD0MIwCMqVLdWYECUhpRSlGgVTegDaBZHQIenZnlGPPt1fZQoaAZoCWgPQwiOyHcpdcFWQJSGlFKUaBVN6ANoFkdAh6hI/7iyZHV9lChoBmgJaA9DCMl06PS8EyNAlIaUUpRoFUv1aBZHQIepCNVBD5V1fZQoaAZoCWgPQwgdylAV0+JhQJSGlFKUaBVN6ANoFkdAh/dQ84gieXV9lChoBmgJaA9DCMO7XMR3fjxAlIaUUpRoFU0TAWgWR0CH/Q4YrJ8wdX2UKGgGaAloD0MIX2HB/YB/IsCUhpRSlGgVS/FoFkdAiB4XvhIe5nV9lChoBmgJaA9DCD/IsmDirGBAlIaUUpRoFU3oA2gWR0CIKIpF1B+ndX2UKGgGaAloD0MIW7VrQlrWWkCUhpRSlGgVTegDaBZHQIg1yTt9hJB1fZQoaAZoCWgPQwhvEoPAytVZQJSGlFKUaBVN6ANoFkdAiEPaqS5iE3V9lChoBmgJaA9DCJ0QOuiSjmFAlIaUUpRoFU3oA2gWR0CISGMOwxFidX2UKGgGaAloD0MIxAd2/BesTECUhpRSlGgVTegDaBZHQIhYDp/wy7B1fZQoaAZoCWgPQwiOdtzwO61iQJSGlFKUaBVN6ANoFkdAiHU5vLowEnV9lChoBmgJaA9DCAdCsoAJbl1AlIaUUpRoFU3oA2gWR0CIdceRxLkCdX2UKGgGaAloD0MIp11MM92aXUCUhpRSlGgVTegDaBZHQIiAWqebutx1fZQoaAZoCWgPQwiTpkHRPO1dQJSGlFKUaBVN6ANoFkdAiIOP99+gDnV9lChoBmgJaA9DCIyFIXJ6q2BAlIaUUpRoFU3oA2gWR0CIg+f7JnxsdX2UKGgGaAloD0MI1SKimDzmYECUhpRSlGgVTegDaBZHQIiJ7QmeDnN1fZQoaAZoCWgPQwiuZwjHrC1hQJSGlFKUaBVN6ANoFkdAiInwuM+/xnV9lChoBmgJaA9DCP8gkiHHwF9AlIaUUpRoFU3oA2gWR0CIiuhV2icodX2UKGgGaAloD0MIc0hqoWRbYkCUhpRSlGgVTegDaBZHQIiLo53kgfV1fZQoaAZoCWgPQwjvxoLCoGpHQJSGlFKUaBVL22gWR0CIla4z7/GVdX2UKGgGaAloD0MIVg3C3G5MZUCUhpRSlGgVTegDaBZHQIjhpUHY6GR1fZQoaAZoCWgPQwjjiSDOwwkuQJSGlFKUaBVL+mgWR0CI6cT5ftx/dX2UKGgGaAloD0MIjLrW3qfaJcCUhpRSlGgVTRcBaBZHQIjwUHObAk91fZQoaAZoCWgPQwha9E4F3KJeQJSGlFKUaBVN6ANoFkdAiQD2/8EV33V9lChoBmgJaA9DCC18fa1LXF5AlIaUUpRoFU3oA2gWR0CJCl+2mYShdX2UKGgGaAloD0MIWoKMgAogXkCUhpRSlGgVTegDaBZHQIkWFVghKUV1fZQoaAZoCWgPQwgIclDCTGJhQJSGlFKUaBVN6ANoFkdAiSK6Wom5UnV9lChoBmgJaA9DCOdtbHYkLGJAlIaUUpRoFU3oA2gWR0CJJvIRRMvidX2UKGgGaAloD0MIOKJ71jUKYUCUhpRSlGgVTegDaBZHQIk1pBNVR1p1fZQoaAZoCWgPQwiVgQNauvdjQJSGlFKUaBVN6ANoFkdAiVIlL39JjHV9lChoBmgJaA9DCMMtH0lJglxAlIaUUpRoFU3oA2gWR0CJXcw/PgNxdX2UKGgGaAloD0MIo5HPK55PYkCUhpRSlGgVTegDaBZHQIlhLPfKp1l1fZQoaAZoCWgPQwirP8IwYF5bQJSGlFKUaBVN6ANoFkdAiWGTRx95QnV9lChoBmgJaA9DCHjUmBBz5mNAlIaUUpRoFU3oA2gWR0CJZ+m+j/ModX2UKGgGaAloD0MIKZfGLzxOYkCUhpRSlGgVTegDaBZHQIlpBP69CeF1fZQoaAZoCWgPQwjAety32ppkQJSGlFKUaBVN6ANoFkdAiXZ+DnNgSnV9lChoBmgJaA9DCB2SWigZsGFAlIaUUpRoFU3oA2gWR0CJw6lOXVsldX2UKGgGaAloD0MI+iZNg6J52b+UhpRSlGgVS/RoFkdAicVLSmZVn3V9lChoBmgJaA9DCC+nBMQkvALAlIaUUpRoFU0rAWgWR0CJypw5vLowdX2UKGgGaAloD0MIkYE8u3yDYUCUhpRSlGgVTegDaBZHQInMZzo2XLN1fZQoaAZoCWgPQwi044bfTUFdQJSGlFKUaBVN6ANoFkdAidL17IDHO3V9lChoBmgJaA9DCGjPZWoS/ClAlIaUUpRoFU0xAWgWR0CJ1gu01IiDdX2UKGgGaAloD0MIVaaYgyDmZECUhpRSlGgVTegDaBZHQIni1OqNp/R1fZQoaAZoCWgPQwjbhlEQPM5kQJSGlFKUaBVN6ANoFkdAievUrsjVx3V9lChoBmgJaA9DCP8DrFW7hlxAlIaUUpRoFU3oA2gWR0CJ9wsasIVudX2UKGgGaAloD0MIeLeyRGdwUkCUhpRSlGgVTegDaBZHQIoDb1ZkkKN1fZQoaAZoCWgPQwgVxEDXPt5gQJSGlFKUaBVN6ANoFkdAigeXXiBGx3V9lChoBmgJaA9DCPCLS1XaqV9AlIaUUpRoFU3oA2gWR0CKFg9SMtK7dX2UKGgGaAloD0MItksbDku7JkCUhpRSlGgVTSwBaBZHQIooeyNXHR11fZQoaAZoCWgPQwi1boPab49YQJSGlFKUaBVN6ANoFkdAijJn9m6GxnV9lChoBmgJaA9DCJYKKqp+411AlIaUUpRoFU3oA2gWR0CKQHFEy+HrdX2UKGgGaAloD0MIbhgFwWOZYkCUhpRSlGgVTegDaBZHQIpHqVGCqZN1fZQoaAZoCWgPQwjq6/ma5WNjQJSGlFKUaBVN6ANoFkdAileoexOclXV9lChoBmgJaA9DCKn26XjMgDxAlIaUUpRoFU0QAWgWR0CKV7J+UhV3dX2UKGgGaAloD0MI8xsmGqTPXUCUhpRSlGgVTegDaBZHQIql3mzSkTJ1fZQoaAZoCWgPQwhORwA3C6hgQJSGlFKUaBVN6ANoFkdAiqd7iqABk3V9lChoBmgJaA9DCG6GG/B5nmFAlIaUUpRoFU3oA2gWR0CKrNjn3cpLdX2UKGgGaAloD0MIym5m9COEYECUhpRSlGgVTegDaBZHQIqubBEa2nd1fZQoaAZoCWgPQwhDG4ANiKNXQJSGlFKUaBVN6ANoFkdAirRwumJm/XV9lChoBmgJaA9DCPZFQlvOOl1AlIaUUpRoFU3oA2gWR0CKt0h9srNGdX2UKGgGaAloD0MIJa5jXHERJMCUhpRSlGgVTR4BaBZHQIrAv/WDpTx1fZQoaAZoCWgPQwgKZ7eWScpgQJSGlFKUaBVN6ANoFkdAisL4bbUPQXV9lChoBmgJaA9DCKCJsOHpKmFAlIaUUpRoFU3oA2gWR0CKyv9bX6IndX2UKGgGaAloD0MIpBzMJsBAQ8CUhpRSlGgVTSoBaBZHQIrSaiwjdHl1fZQoaAZoCWgPQwiTHRuBeC02QJSGlFKUaBVNCwFoFkdAitLTEzfrKXV9lChoBmgJaA9DCMzxCkRPGWVAlIaUUpRoFU3oA2gWR0CK4FCJoCdSdX2UKGgGaAloD0MIQE6YMJo4XkCUhpRSlGgVTegDaBZHQIrkCKm8/Ux1fZQoaAZoCWgPQwgzMshdhI9gQJSGlFKUaBVN6ANoFkdAivFOLBKtgnV9lChoBmgJaA9DCET8w5YeDQ7AlIaUUpRoFU1HAWgWR0CLA8urZJ05dX2UKGgGaAloD0MIJSL8iyDqZECUhpRSlGgVTegDaBZHQIsMOLWI42l1fZQoaAZoCWgPQwhywRn8/SJDQJSGlFKUaBVL2GgWR0CLFZdC3PRidX2UKGgGaAloD0MIcAorFVSXYkCUhpRSlGgVTegDaBZHQIsafEn9ehR1fZQoaAZoCWgPQwjPvBx238paQJSGlFKUaBVN6ANoFkdAiyFd9+gDinV9lChoBmgJaA9DCEZ55uUwxWBAlIaUUpRoFU3oA2gWR0CLMNL7oB7vdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf8403d66282ccf7086312b00a428a882fc5130523d9c161363349fb74315bbd
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f310d31b3e8ca76786fbd4ac3ebc873b01a424c71d2e91d1fd6d18754fc5377f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb3a1b62a781ee1b5ef0d741a3a69f712932c199864b0218f909fab3b6e97f5a
|
3 |
+
size 243507
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 154.40719139735347, "std_reward": 94.09496676065399, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T15:23:50.518007"}
|