kmicha commited on
Commit
34162c6
1 Parent(s): 4884a0a

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 154.41 +/- 94.09
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efe4b5c05f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe4b5c0680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe4b5c0710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe4b5c07a0>", "_build": "<function ActorCriticPolicy._build at 0x7efe4b5c0830>", "forward": "<function ActorCriticPolicy.forward at 0x7efe4b5c08c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe4b5c0950>", "_predict": "<function ActorCriticPolicy._predict at 0x7efe4b5c09e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe4b5c0a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe4b5c0b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe4b5c0b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efe4b6122d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651762018.1948504, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGh6jb6QPt8+y4o5PkZ0Xb7q9Ze9jmsDPgAAAAAAAAAAM77CvApsCLv7ki07NuLausvUDrzmZcG7AACAPwAAgD92BYG+iLOKP/GQKL2No4++SAC5vY70Hj4AAAAAAAAAAJqb5bzs2cG5CRiKOqJTrLRd5tG5SCqjuQAAgD8AAIA/M59XPSkYZboDM7o5cSditdn+T7u9utW4AACAPwAAgD8NPfC9uHvlu0iK2Tuvzz48DN1NPbQqJr0AAIA/AACAPxr0Nj096i25RBOrOWfRm7a79Ry7fNXLuAAAgD8AAIA/4JdlPldEPjx7V5C8Y6dnugpX1z2Lc167AACAPwAAgD9Tlky+LHOPPKRCybohTiQ7FW4YvsX0GLwAAIA/AACAP2Y15LzDaQu6xSHLu9+PzzUGoDi7jkw/tQAAgD8AAIA/M/frO1KokrloH5c6VSontltRbTtyYLK5AACAPwAAgD8mItq9uGb3uUmAuzvpyac2Wj/AuiXlnTUAAIA/AACAP71vkr7kL1s+59okPR+bGr55Pr+9BWr7vAAAAAAAAAAAsz0LviloXbpMVTy8jrw4vQ9jtro2hUE9AAAAAAAAAAAAHpU97NHbufdZM7yBecI2irV+uzV6M7YAAIA/AACAP9pKhj1kjaQ+UiOXvRdpYr7FTr89q+IbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUiegibDJYkCUhpRSlIwBbJRN6AOMAXSUR0CGpTzAeq7zdX2UKGgGaAloD0MIMbWlDvLaAMCUhpRSlGgVS/poFkdAhrTFkYoAn3V9lChoBmgJaA9DCKDFUiRfeTfAlIaUUpRoFUvpaBZHQIa+xaaCtih1fZQoaAZoCWgPQwie6/twkK1dQJSGlFKUaBVN6ANoFkdAhsHySNfgJnV9lChoBmgJaA9DCEJfevvzx2VAlIaUUpRoFU3oA2gWR0CGwkjJMg2ZdX2UKGgGaAloD0MINh5ssdvtV0CUhpRSlGgVTegDaBZHQIbID7TDwYt1fZQoaAZoCWgPQwjEswQZAStYQJSGlFKUaBVN6ANoFkdAhsgVJL/S6XV9lChoBmgJaA9DCCwujspNEVZAlIaUUpRoFU3oA2gWR0CGyQMOPNmldX2UKGgGaAloD0MIMiJRaFmRXECUhpRSlGgVTegDaBZHQIcbAyoGY8d1fZQoaAZoCWgPQwh8t3njpPNWQJSGlFKUaBVN6ANoFkdAhyNoAOrhi3V9lChoBmgJaA9DCOkPzTy5RixAlIaUUpRoFUvzaBZHQIdOCCcwxnF1fZQoaAZoCWgPQwi0rzxITxdcQJSGlFKUaBVN6ANoFkdAh07W2w3YMHV9lChoBmgJaA9DCIEmwoanKFRAlIaUUpRoFU3oA2gWR0CHWwh9LHuJdX2UKGgGaAloD0MIhq3ZykuxXUCUhpRSlGgVTegDaBZHQIdo2pQ1rIp1fZQoaAZoCWgPQwhjf9k9eXghQJSGlFKUaBVN6ANoFkdAh208rRSgoXV9lChoBmgJaA9DCDxodt1bBltAlIaUUpRoFU3oA2gWR0CHcOa0hNdrdX2UKGgGaAloD0MIti+gF+6zVUCUhpRSlGgVTegDaBZHQId7NK28Zk11fZQoaAZoCWgPQwgzw0ZZv3ZjQJSGlFKUaBVN6ANoFkdAh4N5byH2y3V9lChoBmgJaA9DCNaPTfIjDGxAlIaUUpRoFU2lAWgWR0CHlDrCWNWEdX2UKGgGaAloD0MIZwqd11gwYECUhpRSlGgVTegDaBZHQIeUtMK1G9Z1fZQoaAZoCWgPQwh7MZQT7aovQJSGlFKUaBVNEAFoFkdAh5tbxd6cAnV9lChoBmgJaA9DCKHWNO+4tWFAlIaUUpRoFU3oA2gWR0CHnoMTewcHdX2UKGgGaAloD0MIuOUjKekHRkCUhpRSlGgVTegDaBZHQIeho77sOXp1fZQoaAZoCWgPQwj7kSIyrKRhQJSGlFKUaBVN6ANoFkdAh6H0OVgQYnV9lChoBmgJaA9DCC7JAbuaqmBAlIaUUpRoFU3oA2gWR0CHp2Mhouf3dX2UKGgGaAloD0MIwCMqVLdWYECUhpRSlGgVTegDaBZHQIenZnlGPPt1fZQoaAZoCWgPQwiOyHcpdcFWQJSGlFKUaBVN6ANoFkdAh6hI/7iyZHV9lChoBmgJaA9DCMl06PS8EyNAlIaUUpRoFUv1aBZHQIepCNVBD5V1fZQoaAZoCWgPQwgdylAV0+JhQJSGlFKUaBVN6ANoFkdAh/dQ84gieXV9lChoBmgJaA9DCMO7XMR3fjxAlIaUUpRoFU0TAWgWR0CH/Q4YrJ8wdX2UKGgGaAloD0MIX2HB/YB/IsCUhpRSlGgVS/FoFkdAiB4XvhIe5nV9lChoBmgJaA9DCD/IsmDirGBAlIaUUpRoFU3oA2gWR0CIKIpF1B+ndX2UKGgGaAloD0MIW7VrQlrWWkCUhpRSlGgVTegDaBZHQIg1yTt9hJB1fZQoaAZoCWgPQwhvEoPAytVZQJSGlFKUaBVN6ANoFkdAiEPaqS5iE3V9lChoBmgJaA9DCJ0QOuiSjmFAlIaUUpRoFU3oA2gWR0CISGMOwxFidX2UKGgGaAloD0MIxAd2/BesTECUhpRSlGgVTegDaBZHQIhYDp/wy7B1fZQoaAZoCWgPQwiOdtzwO61iQJSGlFKUaBVN6ANoFkdAiHU5vLowEnV9lChoBmgJaA9DCAdCsoAJbl1AlIaUUpRoFU3oA2gWR0CIdceRxLkCdX2UKGgGaAloD0MIp11MM92aXUCUhpRSlGgVTegDaBZHQIiAWqebutx1fZQoaAZoCWgPQwiTpkHRPO1dQJSGlFKUaBVN6ANoFkdAiIOP99+gDnV9lChoBmgJaA9DCIyFIXJ6q2BAlIaUUpRoFU3oA2gWR0CIg+f7JnxsdX2UKGgGaAloD0MI1SKimDzmYECUhpRSlGgVTegDaBZHQIiJ7QmeDnN1fZQoaAZoCWgPQwiuZwjHrC1hQJSGlFKUaBVN6ANoFkdAiInwuM+/xnV9lChoBmgJaA9DCP8gkiHHwF9AlIaUUpRoFU3oA2gWR0CIiuhV2icodX2UKGgGaAloD0MIc0hqoWRbYkCUhpRSlGgVTegDaBZHQIiLo53kgfV1fZQoaAZoCWgPQwjvxoLCoGpHQJSGlFKUaBVL22gWR0CIla4z7/GVdX2UKGgGaAloD0MIVg3C3G5MZUCUhpRSlGgVTegDaBZHQIjhpUHY6GR1fZQoaAZoCWgPQwjjiSDOwwkuQJSGlFKUaBVL+mgWR0CI6cT5ftx/dX2UKGgGaAloD0MIjLrW3qfaJcCUhpRSlGgVTRcBaBZHQIjwUHObAk91fZQoaAZoCWgPQwha9E4F3KJeQJSGlFKUaBVN6ANoFkdAiQD2/8EV33V9lChoBmgJaA9DCC18fa1LXF5AlIaUUpRoFU3oA2gWR0CJCl+2mYShdX2UKGgGaAloD0MIWoKMgAogXkCUhpRSlGgVTegDaBZHQIkWFVghKUV1fZQoaAZoCWgPQwgIclDCTGJhQJSGlFKUaBVN6ANoFkdAiSK6Wom5UnV9lChoBmgJaA9DCOdtbHYkLGJAlIaUUpRoFU3oA2gWR0CJJvIRRMvidX2UKGgGaAloD0MIOKJ71jUKYUCUhpRSlGgVTegDaBZHQIk1pBNVR1p1fZQoaAZoCWgPQwiVgQNauvdjQJSGlFKUaBVN6ANoFkdAiVIlL39JjHV9lChoBmgJaA9DCMMtH0lJglxAlIaUUpRoFU3oA2gWR0CJXcw/PgNxdX2UKGgGaAloD0MIo5HPK55PYkCUhpRSlGgVTegDaBZHQIlhLPfKp1l1fZQoaAZoCWgPQwirP8IwYF5bQJSGlFKUaBVN6ANoFkdAiWGTRx95QnV9lChoBmgJaA9DCHjUmBBz5mNAlIaUUpRoFU3oA2gWR0CJZ+m+j/ModX2UKGgGaAloD0MIKZfGLzxOYkCUhpRSlGgVTegDaBZHQIlpBP69CeF1fZQoaAZoCWgPQwjAety32ppkQJSGlFKUaBVN6ANoFkdAiXZ+DnNgSnV9lChoBmgJaA9DCB2SWigZsGFAlIaUUpRoFU3oA2gWR0CJw6lOXVsldX2UKGgGaAloD0MI+iZNg6J52b+UhpRSlGgVS/RoFkdAicVLSmZVn3V9lChoBmgJaA9DCC+nBMQkvALAlIaUUpRoFU0rAWgWR0CJypw5vLowdX2UKGgGaAloD0MIkYE8u3yDYUCUhpRSlGgVTegDaBZHQInMZzo2XLN1fZQoaAZoCWgPQwi044bfTUFdQJSGlFKUaBVN6ANoFkdAidL17IDHO3V9lChoBmgJaA9DCGjPZWoS/ClAlIaUUpRoFU0xAWgWR0CJ1gu01IiDdX2UKGgGaAloD0MIVaaYgyDmZECUhpRSlGgVTegDaBZHQIni1OqNp/R1fZQoaAZoCWgPQwjbhlEQPM5kQJSGlFKUaBVN6ANoFkdAievUrsjVx3V9lChoBmgJaA9DCP8DrFW7hlxAlIaUUpRoFU3oA2gWR0CJ9wsasIVudX2UKGgGaAloD0MIeLeyRGdwUkCUhpRSlGgVTegDaBZHQIoDb1ZkkKN1fZQoaAZoCWgPQwgVxEDXPt5gQJSGlFKUaBVN6ANoFkdAigeXXiBGx3V9lChoBmgJaA9DCPCLS1XaqV9AlIaUUpRoFU3oA2gWR0CKFg9SMtK7dX2UKGgGaAloD0MItksbDku7JkCUhpRSlGgVTSwBaBZHQIooeyNXHR11fZQoaAZoCWgPQwi1boPab49YQJSGlFKUaBVN6ANoFkdAijJn9m6GxnV9lChoBmgJaA9DCJYKKqp+411AlIaUUpRoFU3oA2gWR0CKQHFEy+HrdX2UKGgGaAloD0MIbhgFwWOZYkCUhpRSlGgVTegDaBZHQIpHqVGCqZN1fZQoaAZoCWgPQwjq6/ma5WNjQJSGlFKUaBVN6ANoFkdAileoexOclXV9lChoBmgJaA9DCKn26XjMgDxAlIaUUpRoFU0QAWgWR0CKV7J+UhV3dX2UKGgGaAloD0MI8xsmGqTPXUCUhpRSlGgVTegDaBZHQIql3mzSkTJ1fZQoaAZoCWgPQwhORwA3C6hgQJSGlFKUaBVN6ANoFkdAiqd7iqABk3V9lChoBmgJaA9DCG6GG/B5nmFAlIaUUpRoFU3oA2gWR0CKrNjn3cpLdX2UKGgGaAloD0MIym5m9COEYECUhpRSlGgVTegDaBZHQIqubBEa2nd1fZQoaAZoCWgPQwhDG4ANiKNXQJSGlFKUaBVN6ANoFkdAirRwumJm/XV9lChoBmgJaA9DCPZFQlvOOl1AlIaUUpRoFU3oA2gWR0CKt0h9srNGdX2UKGgGaAloD0MIJa5jXHERJMCUhpRSlGgVTR4BaBZHQIrAv/WDpTx1fZQoaAZoCWgPQwgKZ7eWScpgQJSGlFKUaBVN6ANoFkdAisL4bbUPQXV9lChoBmgJaA9DCKCJsOHpKmFAlIaUUpRoFU3oA2gWR0CKyv9bX6IndX2UKGgGaAloD0MIpBzMJsBAQ8CUhpRSlGgVTSoBaBZHQIrSaiwjdHl1fZQoaAZoCWgPQwiTHRuBeC02QJSGlFKUaBVNCwFoFkdAitLTEzfrKXV9lChoBmgJaA9DCMzxCkRPGWVAlIaUUpRoFU3oA2gWR0CK4FCJoCdSdX2UKGgGaAloD0MIQE6YMJo4XkCUhpRSlGgVTegDaBZHQIrkCKm8/Ux1fZQoaAZoCWgPQwgzMshdhI9gQJSGlFKUaBVN6ANoFkdAivFOLBKtgnV9lChoBmgJaA9DCET8w5YeDQ7AlIaUUpRoFU1HAWgWR0CLA8urZJ05dX2UKGgGaAloD0MIJSL8iyDqZECUhpRSlGgVTegDaBZHQIsMOLWI42l1fZQoaAZoCWgPQwhywRn8/SJDQJSGlFKUaBVL2GgWR0CLFZdC3PRidX2UKGgGaAloD0MIcAorFVSXYkCUhpRSlGgVTegDaBZHQIsafEn9ehR1fZQoaAZoCWgPQwjPvBx238paQJSGlFKUaBVN6ANoFkdAiyFd9+gDinV9lChoBmgJaA9DCEZ55uUwxWBAlIaUUpRoFU3oA2gWR0CLMNL7oB7vdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e767c097bffee9bdebff68f87035ebfc9f133a98e0594ad2dd0d4a8ff22c895
3
+ size 144036
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efe4b5c05f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe4b5c0680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe4b5c0710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe4b5c07a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efe4b5c0830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efe4b5c08c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe4b5c0950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efe4b5c09e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe4b5c0a70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe4b5c0b00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe4b5c0b90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efe4b6122d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651762018.1948504,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGh6jb6QPt8+y4o5PkZ0Xb7q9Ze9jmsDPgAAAAAAAAAAM77CvApsCLv7ki07NuLausvUDrzmZcG7AACAPwAAgD92BYG+iLOKP/GQKL2No4++SAC5vY70Hj4AAAAAAAAAAJqb5bzs2cG5CRiKOqJTrLRd5tG5SCqjuQAAgD8AAIA/M59XPSkYZboDM7o5cSditdn+T7u9utW4AACAPwAAgD8NPfC9uHvlu0iK2Tuvzz48DN1NPbQqJr0AAIA/AACAPxr0Nj096i25RBOrOWfRm7a79Ry7fNXLuAAAgD8AAIA/4JdlPldEPjx7V5C8Y6dnugpX1z2Lc167AACAPwAAgD9Tlky+LHOPPKRCybohTiQ7FW4YvsX0GLwAAIA/AACAP2Y15LzDaQu6xSHLu9+PzzUGoDi7jkw/tQAAgD8AAIA/M/frO1KokrloH5c6VSontltRbTtyYLK5AACAPwAAgD8mItq9uGb3uUmAuzvpyac2Wj/AuiXlnTUAAIA/AACAP71vkr7kL1s+59okPR+bGr55Pr+9BWr7vAAAAAAAAAAAsz0LviloXbpMVTy8jrw4vQ9jtro2hUE9AAAAAAAAAAAAHpU97NHbufdZM7yBecI2irV+uzV6M7YAAIA/AACAP9pKhj1kjaQ+UiOXvRdpYr7FTr89q+IbvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUiegibDJYkCUhpRSlIwBbJRN6AOMAXSUR0CGpTzAeq7zdX2UKGgGaAloD0MIMbWlDvLaAMCUhpRSlGgVS/poFkdAhrTFkYoAn3V9lChoBmgJaA9DCKDFUiRfeTfAlIaUUpRoFUvpaBZHQIa+xaaCtih1fZQoaAZoCWgPQwie6/twkK1dQJSGlFKUaBVN6ANoFkdAhsHySNfgJnV9lChoBmgJaA9DCEJfevvzx2VAlIaUUpRoFU3oA2gWR0CGwkjJMg2ZdX2UKGgGaAloD0MINh5ssdvtV0CUhpRSlGgVTegDaBZHQIbID7TDwYt1fZQoaAZoCWgPQwjEswQZAStYQJSGlFKUaBVN6ANoFkdAhsgVJL/S6XV9lChoBmgJaA9DCCwujspNEVZAlIaUUpRoFU3oA2gWR0CGyQMOPNmldX2UKGgGaAloD0MIMiJRaFmRXECUhpRSlGgVTegDaBZHQIcbAyoGY8d1fZQoaAZoCWgPQwh8t3njpPNWQJSGlFKUaBVN6ANoFkdAhyNoAOrhi3V9lChoBmgJaA9DCOkPzTy5RixAlIaUUpRoFUvzaBZHQIdOCCcwxnF1fZQoaAZoCWgPQwi0rzxITxdcQJSGlFKUaBVN6ANoFkdAh07W2w3YMHV9lChoBmgJaA9DCIEmwoanKFRAlIaUUpRoFU3oA2gWR0CHWwh9LHuJdX2UKGgGaAloD0MIhq3ZykuxXUCUhpRSlGgVTegDaBZHQIdo2pQ1rIp1fZQoaAZoCWgPQwhjf9k9eXghQJSGlFKUaBVN6ANoFkdAh208rRSgoXV9lChoBmgJaA9DCDxodt1bBltAlIaUUpRoFU3oA2gWR0CHcOa0hNdrdX2UKGgGaAloD0MIti+gF+6zVUCUhpRSlGgVTegDaBZHQId7NK28Zk11fZQoaAZoCWgPQwgzw0ZZv3ZjQJSGlFKUaBVN6ANoFkdAh4N5byH2y3V9lChoBmgJaA9DCNaPTfIjDGxAlIaUUpRoFU2lAWgWR0CHlDrCWNWEdX2UKGgGaAloD0MIZwqd11gwYECUhpRSlGgVTegDaBZHQIeUtMK1G9Z1fZQoaAZoCWgPQwh7MZQT7aovQJSGlFKUaBVNEAFoFkdAh5tbxd6cAnV9lChoBmgJaA9DCKHWNO+4tWFAlIaUUpRoFU3oA2gWR0CHnoMTewcHdX2UKGgGaAloD0MIuOUjKekHRkCUhpRSlGgVTegDaBZHQIeho77sOXp1fZQoaAZoCWgPQwj7kSIyrKRhQJSGlFKUaBVN6ANoFkdAh6H0OVgQYnV9lChoBmgJaA9DCC7JAbuaqmBAlIaUUpRoFU3oA2gWR0CHp2Mhouf3dX2UKGgGaAloD0MIwCMqVLdWYECUhpRSlGgVTegDaBZHQIenZnlGPPt1fZQoaAZoCWgPQwiOyHcpdcFWQJSGlFKUaBVN6ANoFkdAh6hI/7iyZHV9lChoBmgJaA9DCMl06PS8EyNAlIaUUpRoFUv1aBZHQIepCNVBD5V1fZQoaAZoCWgPQwgdylAV0+JhQJSGlFKUaBVN6ANoFkdAh/dQ84gieXV9lChoBmgJaA9DCMO7XMR3fjxAlIaUUpRoFU0TAWgWR0CH/Q4YrJ8wdX2UKGgGaAloD0MIX2HB/YB/IsCUhpRSlGgVS/FoFkdAiB4XvhIe5nV9lChoBmgJaA9DCD/IsmDirGBAlIaUUpRoFU3oA2gWR0CIKIpF1B+ndX2UKGgGaAloD0MIW7VrQlrWWkCUhpRSlGgVTegDaBZHQIg1yTt9hJB1fZQoaAZoCWgPQwhvEoPAytVZQJSGlFKUaBVN6ANoFkdAiEPaqS5iE3V9lChoBmgJaA9DCJ0QOuiSjmFAlIaUUpRoFU3oA2gWR0CISGMOwxFidX2UKGgGaAloD0MIxAd2/BesTECUhpRSlGgVTegDaBZHQIhYDp/wy7B1fZQoaAZoCWgPQwiOdtzwO61iQJSGlFKUaBVN6ANoFkdAiHU5vLowEnV9lChoBmgJaA9DCAdCsoAJbl1AlIaUUpRoFU3oA2gWR0CIdceRxLkCdX2UKGgGaAloD0MIp11MM92aXUCUhpRSlGgVTegDaBZHQIiAWqebutx1fZQoaAZoCWgPQwiTpkHRPO1dQJSGlFKUaBVN6ANoFkdAiIOP99+gDnV9lChoBmgJaA9DCIyFIXJ6q2BAlIaUUpRoFU3oA2gWR0CIg+f7JnxsdX2UKGgGaAloD0MI1SKimDzmYECUhpRSlGgVTegDaBZHQIiJ7QmeDnN1fZQoaAZoCWgPQwiuZwjHrC1hQJSGlFKUaBVN6ANoFkdAiInwuM+/xnV9lChoBmgJaA9DCP8gkiHHwF9AlIaUUpRoFU3oA2gWR0CIiuhV2icodX2UKGgGaAloD0MIc0hqoWRbYkCUhpRSlGgVTegDaBZHQIiLo53kgfV1fZQoaAZoCWgPQwjvxoLCoGpHQJSGlFKUaBVL22gWR0CIla4z7/GVdX2UKGgGaAloD0MIVg3C3G5MZUCUhpRSlGgVTegDaBZHQIjhpUHY6GR1fZQoaAZoCWgPQwjjiSDOwwkuQJSGlFKUaBVL+mgWR0CI6cT5ftx/dX2UKGgGaAloD0MIjLrW3qfaJcCUhpRSlGgVTRcBaBZHQIjwUHObAk91fZQoaAZoCWgPQwha9E4F3KJeQJSGlFKUaBVN6ANoFkdAiQD2/8EV33V9lChoBmgJaA9DCC18fa1LXF5AlIaUUpRoFU3oA2gWR0CJCl+2mYShdX2UKGgGaAloD0MIWoKMgAogXkCUhpRSlGgVTegDaBZHQIkWFVghKUV1fZQoaAZoCWgPQwgIclDCTGJhQJSGlFKUaBVN6ANoFkdAiSK6Wom5UnV9lChoBmgJaA9DCOdtbHYkLGJAlIaUUpRoFU3oA2gWR0CJJvIRRMvidX2UKGgGaAloD0MIOKJ71jUKYUCUhpRSlGgVTegDaBZHQIk1pBNVR1p1fZQoaAZoCWgPQwiVgQNauvdjQJSGlFKUaBVN6ANoFkdAiVIlL39JjHV9lChoBmgJaA9DCMMtH0lJglxAlIaUUpRoFU3oA2gWR0CJXcw/PgNxdX2UKGgGaAloD0MIo5HPK55PYkCUhpRSlGgVTegDaBZHQIlhLPfKp1l1fZQoaAZoCWgPQwirP8IwYF5bQJSGlFKUaBVN6ANoFkdAiWGTRx95QnV9lChoBmgJaA9DCHjUmBBz5mNAlIaUUpRoFU3oA2gWR0CJZ+m+j/ModX2UKGgGaAloD0MIKZfGLzxOYkCUhpRSlGgVTegDaBZHQIlpBP69CeF1fZQoaAZoCWgPQwjAety32ppkQJSGlFKUaBVN6ANoFkdAiXZ+DnNgSnV9lChoBmgJaA9DCB2SWigZsGFAlIaUUpRoFU3oA2gWR0CJw6lOXVsldX2UKGgGaAloD0MI+iZNg6J52b+UhpRSlGgVS/RoFkdAicVLSmZVn3V9lChoBmgJaA9DCC+nBMQkvALAlIaUUpRoFU0rAWgWR0CJypw5vLowdX2UKGgGaAloD0MIkYE8u3yDYUCUhpRSlGgVTegDaBZHQInMZzo2XLN1fZQoaAZoCWgPQwi044bfTUFdQJSGlFKUaBVN6ANoFkdAidL17IDHO3V9lChoBmgJaA9DCGjPZWoS/ClAlIaUUpRoFU0xAWgWR0CJ1gu01IiDdX2UKGgGaAloD0MIVaaYgyDmZECUhpRSlGgVTegDaBZHQIni1OqNp/R1fZQoaAZoCWgPQwjbhlEQPM5kQJSGlFKUaBVN6ANoFkdAievUrsjVx3V9lChoBmgJaA9DCP8DrFW7hlxAlIaUUpRoFU3oA2gWR0CJ9wsasIVudX2UKGgGaAloD0MIeLeyRGdwUkCUhpRSlGgVTegDaBZHQIoDb1ZkkKN1fZQoaAZoCWgPQwgVxEDXPt5gQJSGlFKUaBVN6ANoFkdAigeXXiBGx3V9lChoBmgJaA9DCPCLS1XaqV9AlIaUUpRoFU3oA2gWR0CKFg9SMtK7dX2UKGgGaAloD0MItksbDku7JkCUhpRSlGgVTSwBaBZHQIooeyNXHR11fZQoaAZoCWgPQwi1boPab49YQJSGlFKUaBVN6ANoFkdAijJn9m6GxnV9lChoBmgJaA9DCJYKKqp+411AlIaUUpRoFU3oA2gWR0CKQHFEy+HrdX2UKGgGaAloD0MIbhgFwWOZYkCUhpRSlGgVTegDaBZHQIpHqVGCqZN1fZQoaAZoCWgPQwjq6/ma5WNjQJSGlFKUaBVN6ANoFkdAileoexOclXV9lChoBmgJaA9DCKn26XjMgDxAlIaUUpRoFU0QAWgWR0CKV7J+UhV3dX2UKGgGaAloD0MI8xsmGqTPXUCUhpRSlGgVTegDaBZHQIql3mzSkTJ1fZQoaAZoCWgPQwhORwA3C6hgQJSGlFKUaBVN6ANoFkdAiqd7iqABk3V9lChoBmgJaA9DCG6GG/B5nmFAlIaUUpRoFU3oA2gWR0CKrNjn3cpLdX2UKGgGaAloD0MIym5m9COEYECUhpRSlGgVTegDaBZHQIqubBEa2nd1fZQoaAZoCWgPQwhDG4ANiKNXQJSGlFKUaBVN6ANoFkdAirRwumJm/XV9lChoBmgJaA9DCPZFQlvOOl1AlIaUUpRoFU3oA2gWR0CKt0h9srNGdX2UKGgGaAloD0MIJa5jXHERJMCUhpRSlGgVTR4BaBZHQIrAv/WDpTx1fZQoaAZoCWgPQwgKZ7eWScpgQJSGlFKUaBVN6ANoFkdAisL4bbUPQXV9lChoBmgJaA9DCKCJsOHpKmFAlIaUUpRoFU3oA2gWR0CKyv9bX6IndX2UKGgGaAloD0MIpBzMJsBAQ8CUhpRSlGgVTSoBaBZHQIrSaiwjdHl1fZQoaAZoCWgPQwiTHRuBeC02QJSGlFKUaBVNCwFoFkdAitLTEzfrKXV9lChoBmgJaA9DCMzxCkRPGWVAlIaUUpRoFU3oA2gWR0CK4FCJoCdSdX2UKGgGaAloD0MIQE6YMJo4XkCUhpRSlGgVTegDaBZHQIrkCKm8/Ux1fZQoaAZoCWgPQwgzMshdhI9gQJSGlFKUaBVN6ANoFkdAivFOLBKtgnV9lChoBmgJaA9DCET8w5YeDQ7AlIaUUpRoFU1HAWgWR0CLA8urZJ05dX2UKGgGaAloD0MIJSL8iyDqZECUhpRSlGgVTegDaBZHQIsMOLWI42l1fZQoaAZoCWgPQwhywRn8/SJDQJSGlFKUaBVL2GgWR0CLFZdC3PRidX2UKGgGaAloD0MIcAorFVSXYkCUhpRSlGgVTegDaBZHQIsafEn9ehR1fZQoaAZoCWgPQwjPvBx238paQJSGlFKUaBVN6ANoFkdAiyFd9+gDinV9lChoBmgJaA9DCEZ55uUwxWBAlIaUUpRoFU3oA2gWR0CLMNL7oB7vdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf8403d66282ccf7086312b00a428a882fc5130523d9c161363349fb74315bbd
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f310d31b3e8ca76786fbd4ac3ebc873b01a424c71d2e91d1fd6d18754fc5377f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb3a1b62a781ee1b5ef0d741a3a69f712932c199864b0218f909fab3b6e97f5a
3
+ size 243507
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 154.40719139735347, "std_reward": 94.09496676065399, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T15:23:50.518007"}