l3cube-pune
commited on
Commit
•
4f8ca82
1
Parent(s):
bcc1c2f
Update README.md
Browse files
README.md
CHANGED
@@ -1,18 +1,73 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -70,60 +125,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
-
## Training
|
84 |
-
The model was trained with the parameters:
|
85 |
-
|
86 |
-
**DataLoader**:
|
87 |
-
|
88 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 88058 with parameters:
|
89 |
-
```
|
90 |
-
{'batch_size': 32}
|
91 |
-
```
|
92 |
-
|
93 |
-
**Loss**:
|
94 |
-
|
95 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
96 |
-
```
|
97 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
98 |
-
```
|
99 |
-
|
100 |
-
Parameters of the fit()-Method:
|
101 |
-
```
|
102 |
-
{
|
103 |
-
"epochs": 1,
|
104 |
-
"evaluation_steps": 0,
|
105 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
106 |
-
"max_grad_norm": 1,
|
107 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
108 |
-
"optimizer_params": {
|
109 |
-
"lr": 2e-05
|
110 |
-
},
|
111 |
-
"scheduler": "WarmupLinear",
|
112 |
-
"steps_per_epoch": null,
|
113 |
-
"warmup_steps": 8805,
|
114 |
-
"weight_decay": 0.01
|
115 |
-
}
|
116 |
-
```
|
117 |
-
|
118 |
-
|
119 |
-
## Full Model Architecture
|
120 |
-
```
|
121 |
-
SentenceTransformer(
|
122 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
-
)
|
125 |
-
```
|
126 |
-
|
127 |
-
## Citing & Authors
|
128 |
-
|
129 |
-
<!--- Describe where people can find more information -->
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
license: cc-by-4.0
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
+
language:
|
10 |
+
- multilingual
|
11 |
+
- en
|
12 |
+
- hi
|
13 |
+
- mr
|
14 |
+
- kn
|
15 |
+
- ta
|
16 |
+
- te
|
17 |
+
- ml
|
18 |
+
- gu
|
19 |
+
- or
|
20 |
+
- pa
|
21 |
+
- bn
|
22 |
+
widget:
|
23 |
+
- source_sentence: दिवाळी आपण मोठ्या उत्साहाने साजरी करतो
|
24 |
+
sentences:
|
25 |
+
- दिवाळी आपण आनंदाने साजरी करतो
|
26 |
+
- दिवाळी हा दिव्यांचा सण आहे
|
27 |
+
example_title: Monolingual- Marathi
|
28 |
+
- source_sentence: हम दीपावली उत्साह के साथ मनाते हैं
|
29 |
+
sentences:
|
30 |
+
- हम दीपावली खुशियों से मनाते हैं
|
31 |
+
- दिवाली रोशनी का त्योहार है
|
32 |
+
example_title: Monolingual- Hindi
|
33 |
+
- source_sentence: અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ
|
34 |
+
sentences:
|
35 |
+
- દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ
|
36 |
+
- દિવાળી એ રોશનીનો તહેવાર છે
|
37 |
+
example_title: Monolingual- Gujarati
|
38 |
+
- source_sentence: आम्हाला भारतीय असल्याचा अभिमान आहे
|
39 |
+
sentences:
|
40 |
+
- हमें भारतीय होने पर गर्व है
|
41 |
+
- భారతీయులమైనందుకు గర్విస్తున్నాం
|
42 |
+
- અમને ભારતીય હોવાનો ગર્વ છે
|
43 |
+
example_title: Cross-lingual 1
|
44 |
+
- source_sentence: ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ
|
45 |
+
sentences:
|
46 |
+
- മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു
|
47 |
+
- ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |
|
48 |
+
- बारिश के बाद बगीचा सुंदर दिखता है
|
49 |
+
example_title: Cross-lingual 2
|
50 |
---
|
51 |
|
52 |
+
# IndicSBERT
|
53 |
+
|
54 |
+
This is a MuRIL model (google/muril-base-cased) trained on the NLI dataset of ten major Indian Languages. <br>
|
55 |
+
The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
|
56 |
+
The model also has cross-lingual capabilities. <br>
|
57 |
+
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
|
58 |
|
59 |
+
A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert <br>
|
60 |
|
61 |
+
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
|
62 |
+
|
63 |
+
```
|
64 |
+
@article{joshi2022l3cubemahasbert,
|
65 |
+
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
|
66 |
+
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
|
67 |
+
journal={arXiv preprint arXiv:2211.11187},
|
68 |
+
year={2022}
|
69 |
+
}
|
70 |
+
```
|
71 |
|
72 |
## Usage (Sentence-Transformers)
|
73 |
|
|
|
125 |
print("Sentence embeddings:")
|
126 |
print(sentence_embeddings)
|
127 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|