mjbuehler commited on
Commit
1e0f2e3
1 Parent(s): 3b747f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -116,6 +116,7 @@ from Phi_3V_MoE.moe_phi3_v import Phi3VForCausalLMMoE, Phi3VForCausalLMMoEConfig
116
 
117
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
118
 
 
119
  model_name_1 = f"lamm-mit/Cephalo-Phi-3-vision-128k-4b-beta"
120
  model_1 = AutoModelForCausalLM.from_pretrained(
121
  model_name_1,
@@ -123,6 +124,7 @@ model_1 = AutoModelForCausalLM.from_pretrained(
123
 
124
  ).to(device)
125
 
 
126
  model_name_2 = f"microsoft/Phi-3-vision-128k-instruct"
127
  model_2 = AutoModelForCausalLM.from_pretrained(
128
  model_name_2,
@@ -130,15 +132,15 @@ model_2 = AutoModelForCausalLM.from_pretrained(
130
 
131
  ).to(device)
132
 
133
- model_name_3 = f"lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha"
134
-
135
  model_3 = AutoModelForCausalLM.from_pretrained(
136
  model_name_3,
137
  trust_remote_code=True, torch_dtype=torch.bfloat16,
138
 
139
  ).to(device)
140
 
141
- dtype = torch.bfloat16 # Desired dtype for new layers
142
 
143
  # Initialize the models
144
  base_model = copy.deepcopy(model_2) # Your base model
 
116
 
117
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
118
 
119
+ #Model specialized in bio-inspired/mechanics and materials
120
  model_name_1 = f"lamm-mit/Cephalo-Phi-3-vision-128k-4b-beta"
121
  model_1 = AutoModelForCausalLM.from_pretrained(
122
  model_name_1,
 
124
 
125
  ).to(device)
126
 
127
+ #Original model
128
  model_name_2 = f"microsoft/Phi-3-vision-128k-instruct"
129
  model_2 = AutoModelForCausalLM.from_pretrained(
130
  model_name_2,
 
132
 
133
  ).to(device)
134
 
135
+ #Model trained on conversion of images to LaTeX formulas
136
+ model_name_3 = f"lamm-mit/Cephalo-LaTeX-Phi-3-vision-128k-4b-alpha"
137
  model_3 = AutoModelForCausalLM.from_pretrained(
138
  model_name_3,
139
  trust_remote_code=True, torch_dtype=torch.bfloat16,
140
 
141
  ).to(device)
142
 
143
+ dtype = torch.bfloat16 # Desired dtype for new layers in MoE model
144
 
145
  # Initialize the models
146
  base_model = copy.deepcopy(model_2) # Your base model